Protein alterations associated with temozolomide resistance in subclones of human glioblastoma cell lines

Stella Sun, T. S. Wong, X. Q. Zhang, Jenny K S Pu, Nikki P. Lee, Philip J R Day, Gloria K B Ng, W. M. Lui, Gilberto K K Leung

    Research output: Contribution to journalArticlepeer-review


    Temozolomide (TMZ) is the standard chemotherapeutic agent for human malignant glioma, but intrinsic or acquired chemoresistance represents a major obstacle to successful treatment of this highly lethal group of tumours. Obtaining better understanding of the molecular mechanisms underlying TMZ resistance in malignant glioma is important for the development of better treatment strategies. We have successfully established a passage control line (D54-C10) and resistant variants (D54-P5 and D54- P10) from the parental TMZ-sensitive malignant glioma cell line D54-C0. The resistant sub-cell lines showed alterations in cell morphology, enhanced cell adhesion, increased migration capacities, and cell cycle arrests. Proteomic analysis identified a set of proteins that showed gradual changes in expression according to their 50% inhibitory concentration (IC 50). Successful validation was provided by transcript profiling in another malignant glioma cell line U87-MG and its resistant counterparts. Moreover, three of the identified proteins (vimentin, cathepsin D and prolyl 4-hydroxylase, beta polypeptide) were confirmed to be upregulated in high-grade glioma. Our data suggest that acquired TMZ resistance in human malignant glioma is associated with promotion of malignant phenotypes, and our reported molecular candidates may serve not only as markers of chemoresistance but also as potential therapeutic targets in the treatment of TMZ-resistant human malignant glioma, providing a platform for future investigations. © The Author(s) 2011.
    Original languageEnglish
    Pages (from-to)89-100
    Number of pages11
    JournalJournal of Neuro-Oncology
    Issue number1
    Publication statusPublished - Mar 2012


    • Chemoresistance
    • Glioma
    • Proteomics
    • Temozolomide
    • Two-dimensional gel electrophoresis


    Dive into the research topics of 'Protein alterations associated with temozolomide resistance in subclones of human glioblastoma cell lines'. Together they form a unique fingerprint.

    Cite this