Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a functionally and structurally diverse family of post-translationally modified membrane proteins found mostly in the outer leaflet of the plasma membrane in a variety of eukaryotic cells. Although the general role of GPI-APs remains unclear, they have attracted attention because they act as enzymes and receptors in cell adhesion, differentiation, and host-pathogen interactions. GPI-APs may represent potential diagnostic and therapeutic targets in humans and are interesting in plant biotechnology because of their key role in root development. We here present a general mass spectrometry-based proteomic "shave-and-conquer" strategy that specifically targets GPI-APs. Using a combination of biochemical methods, mass spectrometry, and computational sequence analysis we identified six GPI-APs in a Homo sapiens lipid raft-enriched fraction and 44 GPI-APs in an Arabidopsis thaliana membrane preparation, representing the largest experimental dataset of GPI-anchored proteins to date.
Original language | English |
---|---|
Pages (from-to) | 1261-1270 |
Number of pages | 9 |
Journal | Molecular and Cellular Proteomics |
Volume | 2 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2003 |