Abstract
Background
We previously reported that pheophorbide a (PhA), excited by 630 nm light, significantly inhibited the growth of prostate cancer cells. In this study, we employed whole-cell proteomics to investigate photodynamic treatment (PDT)-related proteins.
Methods
Two-dimensional gel electrophoresis (2-DE) coupled with tandem mass spectrometry was employed to reveal the proteins involved in PhA-mediated PDT in LNCaP and PC-3 prostate cancer cells.
Results
After PhA-PDT treatment, decreased expression of translationally-controlled tumor protein (TCTP) was found in both PC-3 and LNCaP whole-cell proteomes. In contrast, human rab GDP dissociation inhibitor (GDI) in LNCaP cells and ras-related homologs GDI in PC-3 cells were up-regulated.
Conclusions
GDP-GTP exchange is an underlying target of photodynamic treatment in prostate cancer cells.
We previously reported that pheophorbide a (PhA), excited by 630 nm light, significantly inhibited the growth of prostate cancer cells. In this study, we employed whole-cell proteomics to investigate photodynamic treatment (PDT)-related proteins.
Methods
Two-dimensional gel electrophoresis (2-DE) coupled with tandem mass spectrometry was employed to reveal the proteins involved in PhA-mediated PDT in LNCaP and PC-3 prostate cancer cells.
Results
After PhA-PDT treatment, decreased expression of translationally-controlled tumor protein (TCTP) was found in both PC-3 and LNCaP whole-cell proteomes. In contrast, human rab GDP dissociation inhibitor (GDI) in LNCaP cells and ras-related homologs GDI in PC-3 cells were up-regulated.
Conclusions
GDP-GTP exchange is an underlying target of photodynamic treatment in prostate cancer cells.
Original language | English |
---|---|
Pages (from-to) | 35-39 |
Journal | Photodiagnosis and Photodynamic Therapy |
Volume | 23 |
Early online date | 22 May 2018 |
DOIs | |
Publication status | Published - Sept 2018 |