Abstract
Three methods were used to prepare microvillus membrane vesicles from each of six human placentas. Two of these incorporated an agitation stage to preferentially remove microvilli and either Ca2+ (Method 1) or Mg2+ (Method 2) aggregation of non-microvillus membrane. The third method involved homogenisation of the tissue followed by Mg2+ aggregation of non-microvillus membrane (Method 3). Enrichment of alkaline phosphatase activity (27.6 ± 1.9, 25.3 ± 2.7) and ouabain binding (5.9 ± 2.6, 5.3 ± 2.2, respectively) was similar in vesicles prepared by Methods 1 and 2, respectively. Method 3 vesicles showed a significantly (P <0.01) lower alkaline phosphatase enrichment (18.1 ± 1.2), but ouabain binding enrichment (6.3 ± 1.3) was not different and vesicle protein recovery (mg/g placenta) was 5-fold greater. Na+ uptake in the presence of an outwardly directed proton gradient was significantly inhibited in all microvillus membrane vesicles by amiloride (0.5 mM). However, the amiloride sensitive component of Na+ uptake was 3-6-fold greater in Method 3 vesicles than in Method 1 and 2 vesicles, and showed overshoot above equilibrium in the former but not the latter. Further experiments using the pH sensitive dye, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein suggested that the proton gradient dissipated faster from Method 1 than from Method 3 vesicles. Thus methodological differences can have a marked effect on transport processes in microvillus membrane vesicles prepared from the human placenta. © 1988.
Original language | English |
---|---|
Pages (from-to) | 127-134 |
Number of pages | 7 |
Journal | Biochimica et Biophysica Acta - Biomembranes |
Volume | 945 |
Issue number | 2 |
Publication status | Published - 22 Nov 1988 |
Keywords
- (Human placenta)
- Microvillus membrane vesicle
- Sodium ion transport
- Sodium ion-proton exchanger