TY - GEN
T1 - Qualitative comparison of intra-aneurysmal flow structures determined from conventional and virtual angiograms
AU - Cebral, Juan R.
AU - Radaelli, Alessandro
AU - Frangi, Alejandro
AU - Putman, Christopher M.
PY - 2007
Y1 - 2007
N2 - In this study we qualitatively compare the flow structures observed in cerebral aneurysms using conventional angiography and virtual angiograms produced from patient-specific computational fluid dynamics (CFD) models. For this purpose, high frame rate biplane angiograms were obtained during a rapid injection of contrast agent in three patients with intracranial aneurysms. Patient-specific CFD models were then constructed from 3D rotational angiography images of each aneurysm. Time dependent flow fields were obtained from the numerical solution of the incompressible Navier-Stokes equations under pulsatile flow conditions derived from phase-contrast magnetic resonance measurements performed on normal subjects. These flow fields were subsequently used to simulate the transport of a contrast agent by solving the advection-diffusion equation. Both the fluid and transport equations were solved with an implicit finite element formulation on unstructured grids. Virtual angiograms were then constructed by volume rendering of the simulated dye concentration field. The flow structures observed in the conventional and virtual angiograms were then qualitatively compared. It was found that the finite element models showed distinct flow types for each aneurysm, ranging from simple to complex. The virtual angiograms showed good agreement with the images from the conventional angiograms for all three aneurysms. Analogous size and orientation of the inflow jet, regions of flow impaction, major intraaneurysmal vortices and regions of outflow were observed in both the conventional and virtual angiograms. In conclusion, patient-specific image-based computational models of intracranial aneurysms can realistically reproduce the major intraaneurysmal flow structures observed with conventional angiography.
AB - In this study we qualitatively compare the flow structures observed in cerebral aneurysms using conventional angiography and virtual angiograms produced from patient-specific computational fluid dynamics (CFD) models. For this purpose, high frame rate biplane angiograms were obtained during a rapid injection of contrast agent in three patients with intracranial aneurysms. Patient-specific CFD models were then constructed from 3D rotational angiography images of each aneurysm. Time dependent flow fields were obtained from the numerical solution of the incompressible Navier-Stokes equations under pulsatile flow conditions derived from phase-contrast magnetic resonance measurements performed on normal subjects. These flow fields were subsequently used to simulate the transport of a contrast agent by solving the advection-diffusion equation. Both the fluid and transport equations were solved with an implicit finite element formulation on unstructured grids. Virtual angiograms were then constructed by volume rendering of the simulated dye concentration field. The flow structures observed in the conventional and virtual angiograms were then qualitatively compared. It was found that the finite element models showed distinct flow types for each aneurysm, ranging from simple to complex. The virtual angiograms showed good agreement with the images from the conventional angiograms for all three aneurysms. Analogous size and orientation of the inflow jet, regions of flow impaction, major intraaneurysmal vortices and regions of outflow were observed in both the conventional and virtual angiograms. In conclusion, patient-specific image-based computational models of intracranial aneurysms can realistically reproduce the major intraaneurysmal flow structures observed with conventional angiography.
KW - Cerebral aneurysms
KW - Computational fluid dynamics
KW - Hemodynamics
KW - Rotational angiography
KW - Virtual angiography
UR - http://www.scopus.com/inward/record.url?scp=35148821504&partnerID=8YFLogxK
U2 - 10.1117/12.709231
DO - 10.1117/12.709231
M3 - Conference contribution
AN - SCOPUS:35148821504
SN - 0819466298
SN - 9780819466297
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2007
T2 - Medical Imaging 2007: Physiology, Function, and Structure from Medical Images
Y2 - 18 February 2007 through 20 February 2007
ER -