Quantum Chemical Topology and Natural Bond Orbital Analysis of M-O Covalency in M(OC6H5)4 (M = Ti, Zr, Hf, Ce, Th, Pa, U, Np)

Victoria Berryman, Jacob Shephard, Tatsumi Ochiai, Amy Price, Polly Louise Arnold, Simon Parsons, Nikolas Kaltsoyannis

Research output: Contribution to journalArticlepeer-review

25 Downloads (Pure)

Abstract

Covalency is complex yet central to our understanding of chemical bonding, particularly in the actinide series. Here we assess covalency in a series of isostructural d and f transition element compounds M(OC6H5)4 (M = Ti, Zr, Hf, Ce, Th, Pa, U, Np) using scalar relativistic hybrid density functional theory in conjunction with the Natural Bond Orbital (NBO), quantum theory of atoms in molecules (QTAIM) and interacting quantum atoms (IQA) approaches. The IQA exchange-correlation covalency metric is evaluated for the first time for actinides other than uranium, in order to assess its applicability in the 5f series. It is found to have excellent correlation with NBO and QTAIM covalency metrics, making it a promising addition to the computational toolkit for analysing metal-ligand bonding. Our range of metrics agree that the actinide-oxygen bonds are the most covalent of the elements studied, with those of the heavier group 4 elements the least. Within the early actinide series, Th stands apart from the other three elements considered, being consistently the least covalent.
Original languageEnglish
Pages (from-to)16804 - 16812
Number of pages9
JournalPhysical Chemistry Chemical Physics
Volume22
Issue number29
Early online date8 Jul 2020
DOIs
Publication statusPublished - 7 Aug 2020

Fingerprint

Dive into the research topics of 'Quantum Chemical Topology and Natural Bond Orbital Analysis of M-O Covalency in M(OC6H5)4 (M = Ti, Zr, Hf, Ce, Th, Pa, U, Np)'. Together they form a unique fingerprint.

Cite this