Quantum Work Statistics at Strong Reservoir Coupling: Determining the statistics of work done on a quantum system while strongly coupled to a reservoir is a formidable task, requiring the calculation of the full eigenspectrum of the combined system and reservoir. Here, we show that this issue can be circumvented by using a polaron transformation that maps the system into a new frame where weak-coupling theory can be applied. Crucially, this polaron approach reproduces the Jarzynski fluctuation theorem, thus ensuring consistency with the laws of stochastic thermodynamics. We apply our formalism to a system driven across the Landau-Zener transition, where we identify clear signatures in the work distribution arising from a non-negligible coupling to the environment. Our results provide a new method for studying the stochastic thermodynamics of driven quantum systems beyond Markovian, weak-coupling regimes.

O. Diba, H.J.D. Miller, J. Iles-Smith, A. Nazir

Research output: Contribution to journalArticlepeer-review

Abstract

Determining the statistics of work done on a quantum system while strongly coupled to a reservoir is a formidable task, requiring the calculation of the full eigenspectrum of the combined system and reservoir. Here, we show that this issue can be circumvented by using a polaron transformation that maps the system into a new frame where weak-coupling theory can be applied. Crucially, this polaron approach reproduces the Jarzynski fluctuation theorem, thus ensuring consistency with the laws of stochastic thermodynamics. We apply our formalism to a system driven across the Landau-Zener transition, where we identify clear signatures in the work distribution arising from a non-negligible coupling to the environment. Our results provide a new method for studying the stochastic thermodynamics of driven quantum systems beyond Markovian, weak-coupling regimes. © 2024 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Original languageEnglish
Pages (from-to)1-7
Number of pages7
JournalPhysical Review Letters
Volume132
Issue number19
DOIs
Publication statusPublished - 7 May 2024

Keywords

  • Polarons
  • Quantum optics
  • Thermodynamics
  • Combined system
  • Coupling theory
  • Eigenspectrum
  • Fluctuations theorems
  • Landau-zener transitions
  • Quantum system
  • Stochastic thermodynamics
  • Systems-driven
  • Weak couplings
  • Work distribution
  • Stochastic systems

Fingerprint

Dive into the research topics of 'Quantum Work Statistics at Strong Reservoir Coupling: Determining the statistics of work done on a quantum system while strongly coupled to a reservoir is a formidable task, requiring the calculation of the full eigenspectrum of the combined system and reservoir. Here, we show that this issue can be circumvented by using a polaron transformation that maps the system into a new frame where weak-coupling theory can be applied. Crucially, this polaron approach reproduces the Jarzynski fluctuation theorem, thus ensuring consistency with the laws of stochastic thermodynamics. We apply our formalism to a system driven across the Landau-Zener transition, where we identify clear signatures in the work distribution arising from a non-negligible coupling to the environment. Our results provide a new method for studying the stochastic thermodynamics of driven quantum systems beyond Markovian, weak-coupling regimes.'. Together they form a unique fingerprint.

Cite this