QUBIC II: Spectral polarimetry with bolometric interferometry

L. Mousset, M. M. Gamboa Lerena, E. S. Battistelli, P. De Bernardis, P. Chanial, G. D'Alessandro, G. Dashyan, M. De Petris, L. Grandsire, J. Ch Hamilton, F. Incardona, S. Landau, S. Marnieros, S. Masi, A. Mennella, C. O'Sullivan, M. Piat, G. Ricciardi, C. G. Scóccola, M. StolpovskiyA. Tartari, J. P. Thermeau, S. A. Torchinsky, F. Voisin, M. Zannoni, P. Ade, J. G. Alberro, A. Almela, G. Amico, L. H. Arnaldi, D. Auguste, J. Aumont, S. Azzoni, S. Banfi, A. Baù, B. Bélier, D. Bennett, L. Bergé, J. Ph Bernard, M. Bersanelli, M. A. Bigot-Sazy, J. Bonaparte, J. Bonis, E. Bunn, D. Burke, D. Buzi, F. Cavaliere, C. Chapron, R. Charlassier, A. C. Cobos Cerutti, F. Columbro, A. Coppolecchia, G. De Gasperis, M. De Leo, S. Dheilly, C. Duca, L. Dumoulin, A. Etchegoyen, A. Fasciszewski, L. P. Ferreyro, D. Fracchia, C. Franceschet, K. M. Ganga, B. García, M. E. García Redondo, M. Gaspard, D. Gayer, M. Gervasi, M. Giard, V. Gilles, Y. Giraud-Heraud, M. Gómez Berisso, M. González, M. Gradziel, M. R. Hampel, D. Harari, S. Henrot-Versillé, E. Jules, J. Kaplan, C. Kristukat, L. Lamagna, S. Loucatos, T. Louis, B. Maffei, S. Mandelli, W. Marty, A. Mattei, A. May, M. McCulloch, L. Mele, D. Melo, L. Montier, L. M. Mundo, J. A. Murphy, F. Nati, E. Olivieri, C. Oriol, A. Paiella, F. Pajot, A. Passerini, H. Pastoriza, A. Pelosi, C. Perbost, M. Perciballi, F. Pezzotta, F. Piacentini, L. Piccirillo, G. Pisano, M. Platino, G. Polenta, D. Prêle, R. Puddu, D. Rambaud, E. Rasztocky, P. Ringegni, G. E. Romero, J. M. Salum, A. Schillaci, S. Scully, S. Spinelli, G. Stankowiak, A. D. Supanitsky, P. Timbie, M. Tomasi, C. Tucker, G. Tucker, D. Viganò, N. Vittorio, F. Wicek, M. Wright, A. Zullo

Research output: Contribution to journalArticlepeer-review

Abstract

Bolometric interferometry is a novel technique that has the ability to perform spectral imaging. A bolometric interferometer observes the sky in a wide frequency band and can reconstruct sky maps in several sub-bands within the physical band in post-processing of the data. This provides a powerful spectral method to discriminate between the cosmic microwave background (CMB) and astrophysical foregrounds. In this paper, the methodology is illustrated with examples based on the Q & U Bolometric Interferometer for Cosmology (QUBIC) which is a ground-based instrument designed to measure the B-mode polarization of the sky at millimeter wavelengths. We consider the specific cases of point source reconstruction and Galactic dust mapping and we characterize the point spread function as a function of frequency. We study the noise properties of spectral imaging, especially the correlations between sub-bands, using end-to-end simulations together with a fast noise simulator. We conclude showing that spectral imaging performance are nearly optimal up to five sub-bands in the case of QUBIC.

Original languageEnglish
Article number035
Pages (from-to)1-27
Number of pages27
JournalJournal of Cosmology and Astroparticle Physics
Volume2022
Issue number4
DOIs
Publication statusPublished - 21 Apr 2022

Keywords

  • CMBR experiments
  • CMBR theory
  • cosmological parameters from CMBR
  • gravitational waves and CMBR polarization

Research Beacons, Institutes and Platforms

  • Manchester Cancer Research Centre

Fingerprint

Dive into the research topics of 'QUBIC II: Spectral polarimetry with bolometric interferometry'. Together they form a unique fingerprint.

Cite this