TY - JOUR
T1 - Radiation in Combination with Immune Checkpoint Blockade and DNA Damage Response Inhibitors in Mice
T2 - Dosage Optimization in MC38 Syngeneic Tumors via Modelling and Simulation
AU - Hodson, David
AU - Mistry, Hitesh
AU - Yates, James
AU - Farrington, Paul
AU - Staniszewska, Anna
AU - Guzzetti, Sofia
AU - Davies, Michael
AU - Aarons, Leon
AU - Ogungbenro, Kayode
N1 - Copyright © 2023 American Society for Pharmacology and Experimental Therapeutics.
PY - 2023/10/1
Y1 - 2023/10/1
N2 - Clinical trials assessing the impact of radiotherapy (RT) in combination with DNA damage response pathway inhibitors (DDRis) and/or immune checkpoint blockade are currently ongoing. However, current methods for optimizing dosage and schedule are limited. A mathematical model was developed to capture the impacts of RT in combination with DDRi and/or anti-PD-L1 [immune checkpoint inhibitor (ICI)] on tumor immune interactions in theMC38 syngeneic tumor model. The model was fitted to datasets that assessed the impact of RT in combination with the DNA protein kinase inhibitor (DNAPKi) AZD7648. The model was further fitted to datasets from studies that were used to assess both RT/ICI combinations as well as RT/ICI combinations followed by concurrent administration of the poly ADP ribose polymerase inhibitor (PARPi) olaparib. Nonlinear mixed-effects modeling was performed followed by internal validation with visual predictive checks (VPC). Simulations of alternative dosage regimens and schedulingwere performed to identify optimal candidate dosage regimens of RT/DNAPKi and RT/PARPi/ICI. Model fits and VPCs confirmed a successful internal validation for both datasets and demonstrated very small differences in the median, lower, and upper percentile values of tumor diameters between RT/ICI and RT/PARPi/ICI, which indicated that the triple combination of RT/PARPi/ICI at the given dosage and schedule does not provide additional benefit compared with ICI in combination with RT. Simulation of alternative dosage regimens indicated that lowering the dosage of ICI to between 2 and 4 mg/kg could induce similar benefits to the full dosage regimen, which could be of translational benefit.
AB - Clinical trials assessing the impact of radiotherapy (RT) in combination with DNA damage response pathway inhibitors (DDRis) and/or immune checkpoint blockade are currently ongoing. However, current methods for optimizing dosage and schedule are limited. A mathematical model was developed to capture the impacts of RT in combination with DDRi and/or anti-PD-L1 [immune checkpoint inhibitor (ICI)] on tumor immune interactions in theMC38 syngeneic tumor model. The model was fitted to datasets that assessed the impact of RT in combination with the DNA protein kinase inhibitor (DNAPKi) AZD7648. The model was further fitted to datasets from studies that were used to assess both RT/ICI combinations as well as RT/ICI combinations followed by concurrent administration of the poly ADP ribose polymerase inhibitor (PARPi) olaparib. Nonlinear mixed-effects modeling was performed followed by internal validation with visual predictive checks (VPC). Simulations of alternative dosage regimens and schedulingwere performed to identify optimal candidate dosage regimens of RT/DNAPKi and RT/PARPi/ICI. Model fits and VPCs confirmed a successful internal validation for both datasets and demonstrated very small differences in the median, lower, and upper percentile values of tumor diameters between RT/ICI and RT/PARPi/ICI, which indicated that the triple combination of RT/PARPi/ICI at the given dosage and schedule does not provide additional benefit compared with ICI in combination with RT. Simulation of alternative dosage regimens indicated that lowering the dosage of ICI to between 2 and 4 mg/kg could induce similar benefits to the full dosage regimen, which could be of translational benefit.
U2 - 10.1124/jpet.122.001572
DO - 10.1124/jpet.122.001572
M3 - Article
C2 - 37348964
SN - 0022-3565
VL - 387
SP - 44
EP - 54
JO - The Journal of pharmacology and experimental therapeutics
JF - The Journal of pharmacology and experimental therapeutics
IS - 1
ER -