Radio observations of the Black Hole X-ray Binary EXO 1846-031 re-awakening from a 34-year slumber

D. R. A. Williams, S. E. Motta, R. Fender, J. C. A. Miller-Jones, J. Neilsen, J. R. Allison, J. Bright, I. Heywood, P. F. L. Jacob, L. Rhodes, E. Tremou, P. Woudt, J. van den Eijnden, F. Carotenuto, D. A. Green, D. Titterington, A. J. van der Horst, P. Saikia

Research output: Working paper


We present radio [1.3 GHz MeerKAT, 4-8 GHz Karl G. Jansky Very Large Array (VLA) and 15.5 GHz Arcminute Microkelvin Imager Large Array (AMI-LA)] and X-ray (Swift and MAXI) data from the 2019 outburst of the candidate Black Hole X-ray Binary (BHXB) EXO 1846-031. We compute a Hardness-Intensity diagram, which shows the characteristic q-shaped hysteresis of BHXBs in outburst. EXO 1846-031 was monitored weekly with MeerKAT and approximately daily with AMI-LA. The VLA observations provide sub-arcsecond-resolution images at key points in the outburst, showing moving radio components. The radio and X-ray light curves broadly follow each other, showing a peak on ~MJD 58702, followed by a short decline before a second peak between ~MJD 58731-58739. We estimate the minimum energy of these radio flares from equipartition, calculating values of $E_{\rm min} \sim$ 4$\times$10$^{41}$ and 5$\times$10$^{42}$ erg, respectively. The exact date of the return to `quiescence' is missed in the X-ray and radio observations, but we suggest that it likely occurred between MJD 58887 and 58905. From the Swift X-ray flux on MJD 58905 and assuming the soft-to-hard transition happened at 0.3-3 per cent Eddington, we calculate a distance range of 2.4-7.5\,kpc. We computed the radio:X-ray plane for EXO 1846-031 in the `hard' state, showing that it is most likely a `radio-quiet' BH, preferentially at 4.5 kpc. Using this distance and a jet inclination angle of $\theta$=73$^{\circ}$, the VLA data place limits on the intrinsic jet speed of $\beta_{\rm int} = 0.29c$, indicating sub-luminal jet motion....
Original languageEnglish
Publication statusPublished - Sept 2022


Dive into the research topics of 'Radio observations of the Black Hole X-ray Binary EXO 1846-031 re-awakening from a 34-year slumber'. Together they form a unique fingerprint.

Cite this