Rapid transformation of ambient absorbing aerosols from West African biomass burning

Huihui Wu, Jonathan W. Taylor, Justin M. Langridge, Chenjie Yu, James D. Allan, Kate Szpek, Michael I. Cotterell, Paul I. Williams, Michael Flynn, Patrick Barker, Cathryn Fox, Grant Allen, James Lee, Hugh Coe

Research output: Contribution to journalArticlepeer-review

58 Downloads (Pure)

Abstract

Seasonal biomass burning (BB) over West Africa is a globally significant source of carbonaceous particles in the atmosphere, which have important climate impacts but are poorly constrained. Here, the evolution of smoke aerosols emitted 15 from flaming-controlled burning of agricultural waste and wooded savannah in the Senegal region was characterized over a timescale of half-day advection from source during the MOYA-2017 (Methane Observation Yearly Assessment-2017) aircraft campaign. Plumes from such fire types are rich in black carbon (BC) emissions. Concurrent measurements of chemical composition, organic aerosol (OA) oxidation state, bulk aerosol size and BC mixing state reveal that emitted BB submicron aerosols changed dramatically with time. Various aerosol optical properties (e.g., absorption Ångström exponent 20 (AAE), and mass absorption coefficients (MAC)) also evolved with ageing. In this study, brown carbon (BrC) was a minor fractional component of the freshly emitted BB aerosols (<0.5 h), but the increasing AAE with particle age indicates that BrC formation dominated over any loss process over the first ~12 hours of plume transport. Using different methods, the fractional contribution of BrC to total aerosol absorption showed an increasing trend with time and was ~ 18-31 % at the optical wavelength of 405 nm after half-day transport. The generated BrC was found to be positively correlated with 25 oxygenated and low-volatility OA, likely from the oxidation of evaporated primary OA and secondary OA formation. We found that the evolution of BrC with particle age was different in this region compared with previous BB field studies that mainly focused on emissions from smouldering fires, which have shown a high contribution from BrC at source and BrC net loss upon ageing. This study suggests an initial stage of BrC absorption enhancement during the evolution of BB smoke. Secondary processing is the dominant contributor to BrC production in this BB region, in contrast to the primary emission of 30 BrC previously reported in other BB studies. The total aerosol absorption normalized to BC mass (MACmeas-BC) was also enhanced with ageing, due to the lensing effect of increasingly thick coatings on BC and the absorption by BrC. The effect of ageing on aerosol absorption, represented by the absorption enhancement (EAbs-MAC), was estimated over timescales of https://doi.org/10.5194/acp-2021-49 Preprint. Discussion started: 2 February 2021 c Author(s) 2021. CC BY 4.0 License. 2 hours. MOYA-2017 provides novel field results. The comparisons between MOYA-2017 and previous field studies imply that the evolution of absorbing aerosols (BC and BrC) after emission vary with source combustion conditions. Different 35 treatments of absorbing aerosol properties and their evolution in different types of fires should be considered when modelling regional radiative forcing. These observational results will be very important for predicting climate effects of BB aerosol in regions controlled by flaming burning of agricultural waste and savannah-like biomass fuels.
Original languageEnglish
Number of pages37
JournalAtmospheric Chemistry and Physics
DOIs
Publication statusPublished - 21 Jun 2021

Keywords

  • Advection
  • Aerosol
  • Atmosphere
  • Atmospheric sciences
  • Biomass burning
  • Carbon black
  • Chemical composition
  • Environmental science
  • Methane
  • Smoke

Fingerprint

Dive into the research topics of 'Rapid transformation of ambient absorbing aerosols from West African biomass burning'. Together they form a unique fingerprint.

Cite this