TY - JOUR
T1 - RasGAP mediates neuronal survival in Drosophila through direct regulation of Rab5-dependent endocytosis
AU - Rowshanravan, Behzad
AU - Woodcock, Simon
AU - Botella, Jose
AU - Kiermayer, Claudia
AU - Schneuwly, Stephan
AU - Hughes, David
PY - 2014
Y1 - 2014
N2 - The GTPase Ras can either promote or inhibit cell survival. Inactivating mutations in Drosophila RasGAP (encoded by vap), a Ras GTPase-activating protein, lead to age-related brain degeneration. Genetic interactions implicate the epidermal growth factor receptor (EGFR)-Ras pathway in promoting neurodegeneration but the mechanism is not known. Here, we show that the Src homology 2 (SH2) domains of RasGAP are essential for its neuroprotective function. By using affinity purification and mass spectrometry, we identify a complex containing RasGAP together with Sprint, which is a Ras effector and putative activator of the endocytic GTPase Rab5. Formation of the RasGAP-Sprint complex requires the SH2 domains of RasGAP and tyrosine phosphorylation of Sprint. RasGAP and Sprint colocalize with Rab5-positive early endosomes but not with Rab7-positive late endosomes. We demonstrate a key role for this interaction in neurodegeneration: mutation of Sprint (or Rab5) suppresses neuronal cell death caused by the loss of RasGAP. These results indicate that the long-term survival of adult neurons in Drosophila is crucially dependent on the activities of two GTPases, Ras and Rab5, regulated by the interplay of RasGAP and Sprint.
AB - The GTPase Ras can either promote or inhibit cell survival. Inactivating mutations in Drosophila RasGAP (encoded by vap), a Ras GTPase-activating protein, lead to age-related brain degeneration. Genetic interactions implicate the epidermal growth factor receptor (EGFR)-Ras pathway in promoting neurodegeneration but the mechanism is not known. Here, we show that the Src homology 2 (SH2) domains of RasGAP are essential for its neuroprotective function. By using affinity purification and mass spectrometry, we identify a complex containing RasGAP together with Sprint, which is a Ras effector and putative activator of the endocytic GTPase Rab5. Formation of the RasGAP-Sprint complex requires the SH2 domains of RasGAP and tyrosine phosphorylation of Sprint. RasGAP and Sprint colocalize with Rab5-positive early endosomes but not with Rab7-positive late endosomes. We demonstrate a key role for this interaction in neurodegeneration: mutation of Sprint (or Rab5) suppresses neuronal cell death caused by the loss of RasGAP. These results indicate that the long-term survival of adult neurons in Drosophila is crucially dependent on the activities of two GTPases, Ras and Rab5, regulated by the interplay of RasGAP and Sprint.
M3 - Article
SN - 0021-9533
VL - 127
SP - 2849
EP - 2861
JO - Journal of Cell Science
JF - Journal of Cell Science
IS - 13
ER -