TY - JOUR
T1 - Recovery of free-volume in PIM-1 membranes through alcohol vapor treatment
AU - Almansour, Faiz
AU - Alberto, Monica
AU - Bhavsar, Rupesh
AU - Fan, Xiaolei
AU - Budd, Peter
AU - Gorgojo, Patricia
PY - 2020/8/3
Y1 - 2020/8/3
N2 - Physical aging is currently a major obstacle for the commercialization of PIM-1 membranes for gas separation applications. A well-known approach to reversing physical aging effects of PIM-1 membranes at laboratory scale is soaking them in lower alcohols, such as methanol and ethanol. However, this procedure does not seem applicable at industrial level, and other strategies must be investigated. In this work, a regeneration method with alcohol vapors (ethanol or methanol) was developed to recover permeability of aged PIM-1 membranes, in comparison with the conventional soaking-in-liquid approach. The gas permeability and separation performance, before and post the regeneration methods, were assessed using a binary mixture of CO2 and CH4 (1:1, v:v). Our results show that an 8-hour methanol vapor treatment was sufficient to recover the original gas permeability, reaching a CO2 permeability >7,000 barrer.
AB - Physical aging is currently a major obstacle for the commercialization of PIM-1 membranes for gas separation applications. A well-known approach to reversing physical aging effects of PIM-1 membranes at laboratory scale is soaking them in lower alcohols, such as methanol and ethanol. However, this procedure does not seem applicable at industrial level, and other strategies must be investigated. In this work, a regeneration method with alcohol vapors (ethanol or methanol) was developed to recover permeability of aged PIM-1 membranes, in comparison with the conventional soaking-in-liquid approach. The gas permeability and separation performance, before and post the regeneration methods, were assessed using a binary mixture of CO2 and CH4 (1:1, v:v). Our results show that an 8-hour methanol vapor treatment was sufficient to recover the original gas permeability, reaching a CO2 permeability >7,000 barrer.
M3 - Article
SN - 2095-0179
JO - Frontiers of Chemical Science and Engineering
JF - Frontiers of Chemical Science and Engineering
ER -