Regional variation in P2 receptor expression in the rat pulmonary arterial circulation

K. Chootip, K. F. Ness, Y. Wang, A. M. Gurney, C. Kennedy

    Research output: Contribution to journalArticlepeer-review


    1. The P2 receptors that mediate contraction of the rat isolated small (SPA, 200-500 μm i.d.) and large (LPA, 1-1.5 mM i.d.) intrapulmonary arteries were characterized. 2. In endothelium-denuded vessels the contractile order of potency was α,β-methyleneATP (α,β-meATP)> >UDP=UTP=ATP=2-methylthioATP>ADP in the SPA and α,β-meATP=UTP≥-UDP>2-methylthioATP, ATP> >ADP in the LPA. α,β-meATP, 2-methylthioATP and ATP had significantly greater effects in the SPA than the LPA (P <0.001), but there was no difference in the potency of UTP or UDP between the vessels. 3. In the SPA, P2X 1 receptor desensitisation by α,β-meATP (100 μM) inhibited contractions to α,β-meATP (10 nM - 300 μM), but not those to UTP or UDP (100 nM - 300 μM). In the LPA, prolonged exposure to α,β-meATP (100 μM) did not desensitize P2X receptors. 4. Pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS), suramin and reactive blue 2 (RB2) (30 - 300 μM) inhibited contractions evoked by α,β-meATP. UTP and UDP were potentiated by PPADS, unaffected by RB2 and inhibited, but not abolished by suramin. 1 and 3 mM suramin produced no further inhibition, indicating suramin-resistant components in the responses to UTP and UDP. 5. Thus, both P2X and P2Y receptors mediate contraction of rat large and small intrapulmonary arteries. P2Y agonist potency and sensitivity to antagonists were similar in small and large vessels, but P2X agonists were more potent in small arteries. This indicates differential expression of P2X, but not P2Y receptors along the pulmonary arterial tree.
    Original languageEnglish
    Pages (from-to)637-646
    Number of pages9
    JournalBritish Journal of Pharmacology
    Issue number5
    Publication statusPublished - Nov 2002


    • ATP
    • P2X receptors
    • P2Y receptors
    • Pulmonary artery
    • UDP
    • UTP


    Dive into the research topics of 'Regional variation in P2 receptor expression in the rat pulmonary arterial circulation'. Together they form a unique fingerprint.

    Cite this