Abstract
A total of 110 drugs, selected to cover a range of physicochemical and pharmacokinetic properties, were used to explore standard approaches to the prediction of in vivo metabolic clearance using drug-depletion profiles from human liver microsomes (HLMs) and cyropreserved hepatocytes. A total of 41 drugs (37% of the compounds tested) showed measurable depletion rates using HLMs (depletion by 20% or more over the time course). The most reliable correlations in terms of bias (average fold error (AFE) = 2.32) and precision (root mean square error (RMSE) = 3501) were observed by comparing in vivo intrinsic clearance (CLint), calculated using the parallel-tube model and incorporating the fraction unbound in blood, with in vitro CLint adjusted for microsomal binding. For these reference drugs, 29% of predictions were within two-fold of the observed values and 66% were within five-fold. Compared with HLMs, clearance predictions with cryopreserved hepatocytes (57 drugs) were of similar precision (RMSE = 3608) but showed more bias (AFE = 5.21) with 18% of predictions within two-fold of the observed values and 46% within five-fold. However, with a broad complement of drug-metabolizing enzymes, hepatocytes catalysed measurable CLint values for a greater proportion (52%) of the reference compounds and were particularly proficient at defining metabolic rates for drugs with predominantly phase 2 metabolic routes. © 2008 Informa UK Ltd.
Original language | English |
---|---|
Pages (from-to) | 1313-1329 |
Number of pages | 16 |
Journal | Xenobiotica |
Volume | 38 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2008 |
Keywords
- Clearance prediction
- Hepatocytes
- In vitro-in vivo scaling
- Microsomes