Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding

Santiago Coelho*, Jose M. Pozo, Sune N. Jespersen, Derek K. Jones, Alejandro F. Frangi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose: Biophysical tissue models are increasingly used in the interpretation of diffusion MRI (dMRI) data, with the potential to provide specific biomarkers of brain microstructural changes. However, it has been shown recently that, in the general Standard Model, parameter estimation from dMRI data is ill-conditioned even when very high b-values are applied. We analyze this issue for the Neurite Orientation Dispersion and Density Imaging with Diffusivity Assessment (NODDIDA) model and demonstrate that its extension from single diffusion encoding (SDE) to double diffusion encoding (DDE) resolves the ill-posedness for intermediate diffusion weightings, producing an increase in accuracy and precision of the parameter estimation. Methods: We analyze theoretically the cumulant expansion up to fourth order in b of SDE and DDE signals. Additionally, we perform in silico experiments to compare SDE and DDE capabilities under similar noise conditions. Results: We prove analytically that DDE provides invariant information non-accessible from SDE, which makes the NODDIDA parameter estimation injective. The in silico experiments show that DDE reduces the bias and mean square error of the estimation along the whole feasible region of 5D model parameter space. Conclusions: DDE adds additional information for estimating the model parameters, unexplored by SDE. We show, as an example, that this is sufficient to solve the previously reported degeneracies in the NODDIDA model parameter estimation.

Original languageEnglish
Pages (from-to)395-410
Number of pages16
JournalMagnetic Resonance in Medicine
Volume82
Issue number1
DOIs
Publication statusPublished - Jul 2019

Keywords

  • biophysical tissue models
  • diffusion MRI
  • double diffusion encoding
  • microstructure imaging
  • parameter estimation
  • single diffusion encoding
  • white matter

Fingerprint

Dive into the research topics of 'Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding'. Together they form a unique fingerprint.

Cite this