Review on Manufacture of Military Composite Helmet

Y. Liang, C. Soutis

Research output: Contribution to journalArticlepeer-review


Despite of the fact that more and more accessory devices are integrated to functionalize a ballistic helmet system, its core ballistic protective function needs to be improved with weight reduction was and still is the main course in engineering design. The two major generic classes of synthetic fibres for ballistic composites are Ultra High Molecular Weight Polyethylene (UHMWPE) fibre (0.97 g/cm3) and aramid fibre (1.44 g/cm3). In the area of military helmets, these fibres are constructed into different topologies, draping/forming into double-curvature geometric shape in multiple plies, serving as reinforcement for composite shell. The preforming ways influence the subsequent impregnation / solidification and curing step in manufacture, in terms of the fibre orientation and fibre volume fraction. The inherent structural heterogeneity thus leads to scatter in permeability and composite thickness, and have further impact in generating process-induced defects. During the processing, the fibre continuity without wrinkles, together with voids-free are determinative factors to a quality final part. The aim of this paper is to review the manufacturing technologies characterised by thermo-mechanical forming and Liquid Composite Moulding (LCM), relating their processing parameters respectively to the properties of reinforcements in one dimension (1D), two dimensions (2D) and three dimensions (3D), along with that of the matrix in dry or wet phase, interdependency of them are sought.
Original languageEnglish
JournalApplied Composite Materials
Publication statusPublished - 2022


  • ballistic composite helmet; double domed shape; high performance fibres; 1D, 2D and 3D fibre architectures; preforming; manufacture methods


Dive into the research topics of 'Review on Manufacture of Military Composite Helmet'. Together they form a unique fingerprint.

Cite this