Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning rate

S. Hauert, S. Leven, M. Varga, F. Ruini, A. Cangelosi, J-C. Zufferey, D. Floreano

Research output: Contribution to conferencePaperpeer-review

Abstract

The success of swarm behaviors often depends on the range at which robots can communicate and the speed at which they change their behavior. Challenges arise when the communication range is too small with respect to the dynamics of the robot, preventing interactions from lasting long enough to achieve coherent swarming. To alleviate this dependency, most swarm experiments done in laboratory environments rely on communication hardware that is relatively long range and wheeled robotic platforms that have omnidirectional motion. Instead, we focus on deploying a swarm of small fixed-wing flying robots. Such platforms have limited payload, resulting in the use of short-range communication hardware. Furthermore, they are required to maintain forward motion to avoid stalling and typically adopt low turn rates because of physical or energy constraints. The tradeoff between communication range and flight dynamics is exhaustively studied in simulation in the scope of Reynolds flocking and demonstrated with up to 10 robots in outdoor experiments.
Original languageEnglish
Pages5015-5020
Number of pages6
Publication statusPublished - 2011

Fingerprint

Dive into the research topics of 'Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning rate'. Together they form a unique fingerprint.

Cite this