Abstract
Pyrrolidine-amide oligonucleotide mimics (POMs) can cross-pair strongly with complementary parallel and antiparallel DNA and RNA targets in a sequence-specific fashion. As a result POMs have significant potential for applications including in vivo gene silencing, diagnostics and bioanalysis. To further modulate the DNA- and RNA-recognition properties and fine-tune the physiochemical properties of POMs for nucleic acid targeting, backbone-extended pyrrolidine-amide oligonucleotide mimics (bePOM I and II) were introduced. The bePOMs differ from the original POMs through the insertion of an additional methylene group into the backbone units, which increases the flexibility of the oligomers. bePOM I and II oligomers were synthesised using solid-phase peptide chemistry. Interestingly, UV thermal denaturation and circular dichroism studies reveals bePOM I and II can hybridise with complementary RNA, but not DNA. © The Royal Society of Chemistry 2008.
Original language | English |
---|---|
Pages (from-to) | 92-103 |
Number of pages | 11 |
Journal | Organic and Biomolecular Chemistry |
Volume | 6 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2008 |