TY - JOUR
T1 - Role of inertia in nonequilibrium steady states of sheared binary fluids
AU - Fielding, Suzanne M.
PY - 2008/2/22
Y1 - 2008/2/22
N2 - We study numerically phase separation in a binary fluid subject to an applied shear flow in two dimensions, with full hydrodynamics. To do so, we introduce a mixed finite-differencing and spectral simulation technique, with a transformation to render trivial the implementation of Lees-Edwards sheared periodic boundary conditions. For systems with inertia, we reproduce the nonequilibrium steady states reported in a recent lattice Boltzmann study. The domain coarsening that would occur in zero shear is arrested by the applied shear flow, which restores a finite-domain-size set by the inverse shear rate. For inertialess systems, in contrast, we find no evidence of nonequilibrium steady states free of finite-size effects: Coarsening persists indefinitely until the typical domain size attains the system size, as in zero shear. We present an analytical argument that supports this observation and that furthermore provides a possible explanation for a hitherto puzzling property of the nonequilibrium steady states with inertia. © 2008 The American Physical Society.
AB - We study numerically phase separation in a binary fluid subject to an applied shear flow in two dimensions, with full hydrodynamics. To do so, we introduce a mixed finite-differencing and spectral simulation technique, with a transformation to render trivial the implementation of Lees-Edwards sheared periodic boundary conditions. For systems with inertia, we reproduce the nonequilibrium steady states reported in a recent lattice Boltzmann study. The domain coarsening that would occur in zero shear is arrested by the applied shear flow, which restores a finite-domain-size set by the inverse shear rate. For inertialess systems, in contrast, we find no evidence of nonequilibrium steady states free of finite-size effects: Coarsening persists indefinitely until the typical domain size attains the system size, as in zero shear. We present an analytical argument that supports this observation and that furthermore provides a possible explanation for a hitherto puzzling property of the nonequilibrium steady states with inertia. © 2008 The American Physical Society.
U2 - 10.1103/PhysRevE.77.021504
DO - 10.1103/PhysRevE.77.021504
M3 - Article
VL - 77
JO - Physical Review E: covering statistical, nonlinear, biological, and soft matter physics
JF - Physical Review E: covering statistical, nonlinear, biological, and soft matter physics
SN - 1539-3755
IS - 2
M1 - 021504
ER -