SAFT-γ Force Field for the Simulation of Molecular Fluids. 5. Hetero-Group Coarse-Grained Models of Linear Alkanes and the Importance of Intramolecular Interactions

Sadia Rahman, Olga Lobanova, Guadalupe Jiménez-Serratos, Carlos Braga, Vasilios Raptis, Erich A. Müller, George Jackson, Carlos Avendaño, Amparo Galindo*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The SAFT-γ Mie group-contribution equation of state [ Papaioannou et al. J. Chem. Phys. 2014, 140, 054107 ] is used to develop a transferable coarse-grained (CG) force-field suitable for the molecular simulation of linear alkanes. A heterogroup model is fashioned at the resolution of three carbon atoms per bead in which different Mie (generalized Lennard-Jones) interactions are used to characterize the terminal (CH3-CH2-CH2-) and middle (-CH2-CH2-CH2-) beads. The force field is developed by combining the SAFT-γ CG top-down approach [ Avendaño et al. J. Phys. Chem. B 2011, 115, 11154 ], using experimental phase-equilibrium data for n-alkanes ranging from n-nonane to n-pentadecane to parametrize the intermolecular (nonbonded) bead-bead interactions, with a bottom-up approach relying on simulations based on the higher resolution TraPPE united-atom (UA) model [ Martin;, Siepmann J. Phys. Chem. B 1998, 102, 2569 ] to establish the intramolecular (bonded) interactions. The transferability of the SAFT-γ CG model is assessed from a detailed examination of the properties of linear alkanes ranging from n-hexane (n-C6H14) to n-octadecane (n-C18H38), including an additional evaluation of the reliability of the description for longer chains such as n-hexacontane (n-C60H122) and a prototypical linear polyethylene of moderate molecular weight (n-C900H1802). A variety of structural, thermodynamic, and transport properties are examined, including the pair distribution functions, vapor-liquid equilibria, interfacial tension, viscosity, and diffusivity. Particular focus is placed on the impact of incorporating intramolecular interactions on the accuracy, transferability, and representability of the CG model. The novel SAFT-γ CG force field is shown to provide a reliable description of the thermophysical properties of the n-alkanes, in most cases at a level comparable to the that obtained with higher resolution models.

    Original languageEnglish
    Pages (from-to)9161-9177
    Number of pages17
    JournalThe Journal of Physical Chemistry Part B
    Volume122
    Issue number39
    Early online date4 Sept 2018
    DOIs
    Publication statusPublished - 4 Oct 2018

    Fingerprint

    Dive into the research topics of 'SAFT-γ Force Field for the Simulation of Molecular Fluids. 5. Hetero-Group Coarse-Grained Models of Linear Alkanes and the Importance of Intramolecular Interactions'. Together they form a unique fingerprint.

    Cite this