SciMMIR: Benchmarking Scientific Multi-modal Information Retrieval

Siwei Wu, Yizhi Li, Kang Zhu, Ge Zhang, Yiming Liang, Kaijing Ma, Chenghao Xiao, Haoran Zhang, Bohao Yang, Wenhu Chen, Wenhao Huang, Noura Al Moubayed, Jie Fu, Chenghua Lin

Research output: Working paperPreprint

4 Downloads (Pure)

Abstract

Multi-modal information retrieval (MMIR) is a rapidly evolving field, where significant progress, particularly in image-text pairing, has been made through advanced representation learning and cross-modality alignment research. However, current benchmarks for evaluating MMIR performance in image-text pairing within the scientific domain show a notable gap, where chart and table images described in scholarly language usually do not play a significant role. To bridge this gap, we develop a specialised scientific MMIR (SciMMIR) benchmark by leveraging open-access paper collections to extract data relevant to the scientific domain. This benchmark comprises 530K meticulously curated image-text pairs, extracted from figures and tables with detailed captions in scientific documents. We further annotate the image-text pairs with two-level subset-subcategory hierarchy annotations to facilitate a more comprehensive evaluation of the baselines. We conducted zero-shot and fine-tuning evaluations on prominent multi-modal image-captioning and visual language models, such as CLIP and BLIP. Our analysis offers critical insights for MMIR in the scientific domain, including the impact of pre-training and fine-tuning settings and the influence of the visual and textual encoders. All our data and checkpoints are publicly available at https://github.com/Wusiwei0410/SciMMIR.
Original languageEnglish
Publication statusPublished - 24 Jan 2024

Keywords

  • cs.IR
  • cs.CL
  • cs.CV
  • cs.MM

Fingerprint

Dive into the research topics of 'SciMMIR: Benchmarking Scientific Multi-modal Information Retrieval'. Together they form a unique fingerprint.

Cite this