Self-assembled octapeptide scaffolds for in vitro chondrocyte culture

Ayeesha Mujeeb, Aline F Miller, Alberto Saiani, Julie E Gough

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Nature has evolved a variety of creative approaches to many aspects of materials synthesis and microstructural control. Molecular self-assembly is a simple and efficient way to fabricate complex nanostructures such as hydrogels. We have recently investigated the gelation properties of a series of ionic-complementary peptides based on the alternation of non-polar hydrophobic and polar hydrophilic residues. In this work we focus on one specific octapeptide, FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine). This peptide was shown to self-assemble in solution and form beta-sheet-rich nanofibres which, above a critical gelation concentration, entangle to form a self-supporting hydrogel. The fibre morphology of the hydrogel was analysed using transmission electron microscopy and cryo-scanning electron microscopy illustrating a dense fibrillar network of nanometer size fibres. Oscillatory rheology results show that the hydrogel possesses visco-elastic properties. Bovine chondrocytes were used to assess the biocompatibility of the scaffolds over 21 days under two-dimensional (2-D) and three-dimensional (3-D) cell culture conditions, particularly looking at cell morphology, proliferation and matrix deposition. 2-D culture resulted in cell viability and collagen type I deposition. In 3-D culture the mechanically stable gel was shown to support the viability of cells, the retention of cell morphology and collagen type II deposition. Subsequently the scaffold may serve as a template for cartilage tissue engineering. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
    Original languageEnglish
    Pages (from-to)4609-4617
    Number of pages9
    JournalActa Biomaterialia
    Volume9
    Issue number1
    DOIs
    Publication statusPublished - 1 Jan 2013

    Keywords

    • Cell culture
    • Chondrocytes
    • Hydrogels
    • Octapeptides
    • Self-assembly

    Fingerprint

    Dive into the research topics of 'Self-assembled octapeptide scaffolds for in vitro chondrocyte culture'. Together they form a unique fingerprint.

    Cite this