Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound Reconstruction

Mingyuan Luo, Xin Yang, Xiaoqiong Huang, Yuhao Huang, Yuxin Zou, Xindi Hu, Nishant Ravikumar, Alejandro F. Frangi, Dong Ni*

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

Abstract

3D ultrasound (US) is widely used for its rich diagnostic information. However, it is criticized for its limited field of view. 3D freehand US reconstruction is promising in addressing the problem by providing broad range and freeform scan. The existing deep learning based methods only focus on the basic cases of skill sequences, and the model relies on the training data heavily. The sequences in real clinical practice are a mix of diverse skills and have complex scanning paths. Besides, deep models should adapt themselves to the testing cases with prior knowledge for better robustness, rather than only fit to the training cases. In this paper, we propose a novel approach to sensorless freehand 3D US reconstruction considering the complex skill sequences. Our contribution is three-fold. First, we advance a novel online learning framework by designing a differentiable reconstruction algorithm. It realizes an end-to-end optimization from section sequences to the reconstructed volume. Second, a self-supervised learning method is developed to explore the context information that reconstructed by the testing data itself, promoting the perception of the model. Third, inspired by the effectiveness of shape prior, we also introduce adversarial training to strengthen the learning of anatomical shape prior in the reconstructed volume. By mining the context and structural cues of the testing data, our online learning methods can drive the model to handle complex skill sequences. Experimental results on developmental dysplasia of the hip US and fetal US datasets show that, our proposed method can outperform the start-of-the-art methods regarding the shift errors and path similarities.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings
EditorsMarleen de Bruijne, Marleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Essert
PublisherSpringer Nature
Pages201-210
Number of pages10
ISBN (Print)9783030872304
DOIs
Publication statusPublished - 21 Sept 2021
Event24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: 27 Sept 20211 Oct 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12906 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period27/09/211/10/21

Keywords

  • Freehand 3D ultrasound
  • Self context
  • Shape prior

Fingerprint

Dive into the research topics of 'Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound Reconstruction'. Together they form a unique fingerprint.

Cite this