Projects per year
Abstract
The rapid prototyping and optimization of plasmid-based recombinant gene expression is one of the key steps in the development of bioengineered bacterial systems. Often, multiple genes or gene modules need to be coexpressed, and for this purpose compatible, inducible plasmid systems have been developed. However, inducible expression systems are not favored in industrial processes, due to their prohibitive cost, and consequently the conversion to constitutive expression systems is often desired. Here we present a set of constitutive-expression plasmids for this purpose, which were benchmarked using fluorescent reporter genes. To further facilitate the conversion between inducible and constitutive expression systems, we developed SelProm, a design tool that serves as a parts repository of plasmid expression strength and predicts portability rules between constitutive and inducible plasmids through model comparison and machine learning.
Original language | English |
---|---|
Journal | ACS Synthetic Biology |
Early online date | 14 Mar 2019 |
DOIs | |
Publication status | Published - 2019 |
Research Beacons, Institutes and Platforms
- Manchester Institute of Biotechnology
Fingerprint
Dive into the research topics of 'SelProm: A Queryable and Predictive Expression Vector Selection Tool for Escherichia coli'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals
Scrutton, N. (PI), Azapagic, A. (CoI), Balmer, A. (CoI), Barran, P. (CoI), Breitling, R. (CoI), Delneri, D. (CoI), Dixon, N. (CoI), Faulon, J.-L. (CoI), Flitsch, S. (CoI), Goble, C. (CoI), Goodacre, R. (CoI), Hay, S. (CoI), Kell, D. (CoI), Leys, D. (CoI), Lloyd, J. (CoI), Lockyer, N. (CoI), Martin, P. (CoI), Micklefield, J. (CoI), Munro, A. (CoI), Pedrosa Mendes, P. (CoI), Randles, S. (CoI), Salehi Yazdi, F. (CoI), Shapira, P. (CoI), Takano, E. (CoI), Turner, N. (CoI) & Winterburn, J. (CoI)
14/11/14 → 13/05/20
Project: Research