Semi-Supervised Machine Learning for Automated Species Identification by Collagen Peptide Mass Fingerprinting

Muxin Gu, Michael Buckley

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Background

    Biomolecular methods for species identification are increasingly being utilised in the study of changing environments, both at the microscopic and macroscopic levels. High-throughput peptide mass fingerprinting has been largely applied to bacterial identification, but increasingly used to identify archaeological and palaeontological skeletal material to yield information on past environments and human-animal interaction. However, as applications move away from predominantly domesticate and the more abundant wild fauna to a much wider range of less common taxa that do not yet have genetically-derived sequence information, robust methods of species identification and biomarker selection need to be determined.

    Results

    Here we developed a supervised machine learning algorithm for classifying the species of ancient remains based on collagen fingerprinting. The aim was to minimise requirements on prior knowledge of known species while yielding satisfactory sensitivity and specificity. The algorithm uses iterations of a modified random forest classifier with a similarity scoring system to expand its identified samples. We tested it on a set of 6805 spectra and found that a high level of accuracy can be achieved with a training set of five identified specimens per taxon.

    Conclusions

    This method consistently achieves higher accuracy than two-dimensional principal component analysis and similar accuracy with hierarchical clustering using optimised parameters, which greatly reduces requirements for human input. Within the vertebrata, we demonstrate that this method was able to achieve the taxonomic resolution of family or sub-family level whereas the genus- or species-level identification may require manual interpretation or further experiments. In addition, it also identifies additional species biomarkers than those previously published.
    Original languageEnglish
    JournalBMC Bioinformatics
    Volume19
    Early online date26 Jun 2018
    DOIs
    Publication statusPublished - 2018

    Research Beacons, Institutes and Platforms

    • Manchester Institute of Biotechnology

    Fingerprint

    Dive into the research topics of 'Semi-Supervised Machine Learning for Automated Species Identification by Collagen Peptide Mass Fingerprinting'. Together they form a unique fingerprint.

    Cite this