TY - JOUR
T1 - Shuffling the Neutral Drift of Unspecific Peroxygenase in Saccharomyces cerevisiae
AU - Martin-diaz, Javier
AU - Paret, Carmen
AU - García-ruiz, Eva
AU - Molina-espeja, Patricia
AU - Alcalde, Miguel
A2 - Schottel, Janet L.
PY - 2018
Y1 - 2018
N2 - Unspecific peroxygenase (UPO) is a highly promiscuous biocatalyst, and its selective mono(per)oxygenase activity makes it useful for many synthetic chemistry applications. Among the broad repertory of library creation methods for directed enzyme evolution, genetic drift allows neutral mutations to be accumulated gradually within a polymorphic network of variants. In this study, we conducted a campaign of genetic drift with UPO in Saccharomyces cerevisiae, so that neutral mutations were simply added and recombined in vivo. With low mutational loading and an activity threshold of 45% of the parent's native function, mutant libraries enriched in folded active UPO variants were generated. After only eight rounds of genetic drift and DNA shuffling, we identified an ensemble of 25 neutrally evolved variants with changes in peroxidative and peroxygenative activities, kinetic thermostability, and enhanced tolerance to organic solvents. With an average of 4.6 substitutions introduced per clone, neutral mutations covered approximately 10% of the protein sequence. Accordingly, this study opens new avenues for UPO design by bringing together neutral genetic drift and DNA recombination in vivo.
AB - Unspecific peroxygenase (UPO) is a highly promiscuous biocatalyst, and its selective mono(per)oxygenase activity makes it useful for many synthetic chemistry applications. Among the broad repertory of library creation methods for directed enzyme evolution, genetic drift allows neutral mutations to be accumulated gradually within a polymorphic network of variants. In this study, we conducted a campaign of genetic drift with UPO in Saccharomyces cerevisiae, so that neutral mutations were simply added and recombined in vivo. With low mutational loading and an activity threshold of 45% of the parent's native function, mutant libraries enriched in folded active UPO variants were generated. After only eight rounds of genetic drift and DNA shuffling, we identified an ensemble of 25 neutrally evolved variants with changes in peroxidative and peroxygenative activities, kinetic thermostability, and enhanced tolerance to organic solvents. With an average of 4.6 substitutions introduced per clone, neutral mutations covered approximately 10% of the protein sequence. Accordingly, this study opens new avenues for UPO design by bringing together neutral genetic drift and DNA recombination in vivo.
U2 - 10.1128/AEM.00808-18
DO - 10.1128/AEM.00808-18
M3 - Article
SN - 0099-2240
VL - 84
JO - Applied and environmental microbiology
JF - Applied and environmental microbiology
IS - 15
ER -