Sim-and-Real Reinforcement Learning for Manipulation: A Consensus-based Approach

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Sim-and-real training is a promising alternative to sim-to-real training for robot manipulations. However, the current sim-and-real training is neither efficient, i.e., slow con-vergence to the optimal policy, nor effective, i.e., sizeable real-world robot data. Given limited time and hardware budgets, the performance of sim-and-real training is not satisfactory. In this paper, we propose a Consensus-based Sim-And-Real deep reinforcement learning algorithm (CSAR) for manipulator pick-and-place tasks, which shows comparable performance in both sim-and- real worlds. In this algorithm, we train the agents in simulators and the real world to get the optimal policies for both sim-and-real worlds. We found two interesting phenomenons: (1) Best policy in simulation is not the best for sim-and-real training. (2) The more simulation agents, the better sim-and-real training. The experimental video is available at: https://youtu.be/mcHJtNIsTEQ.

Original languageEnglish
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
PublisherIEEE
Pages3911-3917
Number of pages7
ISBN (Electronic)9798350323658
DOIs
Publication statusPublished - 2023
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: 29 May 20232 Jun 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2023-May
ISSN (Print)1050-4729

Conference

Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom
CityLondon
Period29/05/232/06/23

Fingerprint

Dive into the research topics of 'Sim-and-Real Reinforcement Learning for Manipulation: A Consensus-based Approach'. Together they form a unique fingerprint.

Cite this