Abstract
H I intensity mapping is an emerging tool to probe dark energy. Observations of the redshifted H I signal will be contaminated by instrumental noise, atmospheric and Galactic foregrounds. The latter is expected to be four orders of magnitude brighter than the H I emission we wish to detect. We present a simulation of single-dish observations including an instrumental noise model with 1/f and white noise, and sky emission with a diffuse Galactic foreground and H I emission. We consider two foreground cleaning methods: spectral parametric fitting and principal component analysis. For a smooth frequency spectrum of the foreground and instrumental effects, we find that the parametric fitting method provides residuals that are still contaminated by foreground and 1/f noise, but the principal component analysis can remove this contamination down to the thermal noise level. This method is robust for a range of different models of foreground and noise, and so constitutes a promising way to recover the H I signal from the data. However, it induces a leakage of the cosmological signal into the subtracted foreground of around 5 per cent. The efficiency of the component separation methods depends heavily on the smoothness of the frequency spectrum of the foreground and the 1/f noise. We find that as long as the spectral variations over the band are slow compared to the channel width, the foreground cleaning method still works.
Original language | English |
---|---|
Pages (from-to) | 3240-3253 |
Number of pages | 14 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 454 |
Publication status | Published - 2015 |
Keywords
- methods: statistical
- cosmology: observations
- diffuse radiation
- radio continuum: general
- radio lines: galaxies
- radio lines: ISM