TY - JOUR
T1 - Solution blow spinning of highly deacetylated chitosan nanofiber scaffolds for dermal wound healing
AU - Geng, Tianxang
AU - Heyward, Catherine
AU - Reseland, Janne
AU - Lyngstadaas, Petter
A2 - Blaker, Jonny
A2 - Haugen, Havard
PY - 2022/6/1
Y1 - 2022/6/1
N2 - Biocompatible fibrous scaffolds based on highly deacetylated chitosan were fabricated using high-throughput solution blow spinning. Scanning electron microscopy analysis revealed that the chitosan nanofiber scaffolds had ultrafine and continuous fibers (300–1200 nm) with highly interconnected porous structures (30–75% porosity), mimicking some aspects of the native extracellular matrix in skin tissue. Post-treatment of as-spun nanofibers with aqueous potassium carbonate solution resulted in a fibrous scaffold with a high chitosan content that retained its fibrous structural integrity for cell culture. Analysis of the mechanical properties of the chitosan nanofiber scaffolds in both dry and wet conditions showed that their strength and durability were sufficient for wound dressing applications. Significantly, the wet scaffold underwent remarkable elastic deformation during stretch such that the elongation at break dramatically increased to up to 44% of its original length, showing wavy fiber morphology near the break site. The culture of normal human dermal fibroblast cells onto scaffolds for 1–14 days demonstrated that the scaffolds were highly compatible and a suitable platform for cell adhesion, viability, and proliferation. Secretion profiles of wound healing-related proteins to the cell culture medium demonstrated that chitosan fibers were a promising scaffold for wound healing applications. Overall, the dense fibrous network with high porosity of the chitosan nanofiber scaffold and their mechanical properties indicate that they could be used to design and fabricate new materials that mimic the epidermis layer of natural skin.
AB - Biocompatible fibrous scaffolds based on highly deacetylated chitosan were fabricated using high-throughput solution blow spinning. Scanning electron microscopy analysis revealed that the chitosan nanofiber scaffolds had ultrafine and continuous fibers (300–1200 nm) with highly interconnected porous structures (30–75% porosity), mimicking some aspects of the native extracellular matrix in skin tissue. Post-treatment of as-spun nanofibers with aqueous potassium carbonate solution resulted in a fibrous scaffold with a high chitosan content that retained its fibrous structural integrity for cell culture. Analysis of the mechanical properties of the chitosan nanofiber scaffolds in both dry and wet conditions showed that their strength and durability were sufficient for wound dressing applications. Significantly, the wet scaffold underwent remarkable elastic deformation during stretch such that the elongation at break dramatically increased to up to 44% of its original length, showing wavy fiber morphology near the break site. The culture of normal human dermal fibroblast cells onto scaffolds for 1–14 days demonstrated that the scaffolds were highly compatible and a suitable platform for cell adhesion, viability, and proliferation. Secretion profiles of wound healing-related proteins to the cell culture medium demonstrated that chitosan fibers were a promising scaffold for wound healing applications. Overall, the dense fibrous network with high porosity of the chitosan nanofiber scaffold and their mechanical properties indicate that they could be used to design and fabricate new materials that mimic the epidermis layer of natural skin.
U2 - 10.1016/j.bioadv.2022.212871
DO - 10.1016/j.bioadv.2022.212871
M3 - Article
SN - 2772-9508
VL - 137
JO - Biomaterials Advances
JF - Biomaterials Advances
IS - 212871
M1 - 212871
ER -