TY - JOUR
T1 - Spatially-Resolved Investigation of the Water Inhibition of Methane Oxidation over Palladium
AU - Coney, Ciaran
AU - Stere, Cristina Elena
AU - Millington, Paul
AU - Raj, Agnes
AU - Wilkinson, Sam
AU - Caracotsios, Michael
AU - Mccullough, Geoffrey
AU - Hardacre, Christopher
AU - Morgan, Kevin
AU - Thompsett, David
AU - Goguet, Alexandre
PY - 2020
Y1 - 2020
N2 - Pd/Al2O3 catalysts are known to be active for the low temperature methane oxidation reactions, however it has been shown that a number of gases normally associated with methane gas streams (H2O, CO2, H2S) can have an inhibitory effect on the total oxidation reaction. This work focuses on the effect of H2O on the complete oxidation of methane on a 3%Pd/Al2O3 wash-coated monolith, with a view to understanding the reaction and inhibition mechanisms and their interplay with heat and mass transport phenomena in the monolith. Steady state furnace temperatures of 400°C, 425°C and 450°C, in conjunction with a spatially resolved capillary inlet mass spectrometry (SpaciMS) approach, were employed to test the spatial effect of 0-10% H2O feed concentrations and temperature on complete methane oxidation reactions. 12 sets of experimental intra-catalyst axially resolved gas temperature and concentration profiles were obtained in a central monolith channel and were used to screen a number of postulated global kinetic models, utilising an in house parameter estimation routine developed using Athena Visual Studio v.14.2. A 1D heterogeneous single channel reactor model has been incorporated into the model imposing a gaseous temperature spline to improve the confidence in parameter estimation. The Akaike information criterion (AIC) was used to discriminate between a number of hypothesised global kinetic models, with a newly derived 2 site model demonstrating the best statistical fit.
AB - Pd/Al2O3 catalysts are known to be active for the low temperature methane oxidation reactions, however it has been shown that a number of gases normally associated with methane gas streams (H2O, CO2, H2S) can have an inhibitory effect on the total oxidation reaction. This work focuses on the effect of H2O on the complete oxidation of methane on a 3%Pd/Al2O3 wash-coated monolith, with a view to understanding the reaction and inhibition mechanisms and their interplay with heat and mass transport phenomena in the monolith. Steady state furnace temperatures of 400°C, 425°C and 450°C, in conjunction with a spatially resolved capillary inlet mass spectrometry (SpaciMS) approach, were employed to test the spatial effect of 0-10% H2O feed concentrations and temperature on complete methane oxidation reactions. 12 sets of experimental intra-catalyst axially resolved gas temperature and concentration profiles were obtained in a central monolith channel and were used to screen a number of postulated global kinetic models, utilising an in house parameter estimation routine developed using Athena Visual Studio v.14.2. A 1D heterogeneous single channel reactor model has been incorporated into the model imposing a gaseous temperature spline to improve the confidence in parameter estimation. The Akaike information criterion (AIC) was used to discriminate between a number of hypothesised global kinetic models, with a newly derived 2 site model demonstrating the best statistical fit.
U2 - 10.1039/D0CY00154F
DO - 10.1039/D0CY00154F
M3 - Article
SN - 2044-4753
JO - Catalysis Science & Technology
JF - Catalysis Science & Technology
ER -