TY - GEN
T1 - SpyDust: an improved and extended implementation for modeling spinning dust radiation
AU - Zhang, Zheng
AU - Chluba, Jens
PY - 2024
Y1 - 2024
N2 - This paper presents 'SpyDust', an improved and extended implementation of the spinning dust emission model based on a Fokker-Planck treatment. 'SpyDust' serves not only as a Python successor to 'spdust', but also incorporates some corrections and extensions. Unlike 'spdust', which is focused on specific grain shapes, 'SpyDust' considers a wider range of grain shapes and provides the corresponding grain dynamics, directional radiation field and angular momentum transports. We recognise the unique effects of different grain shapes on emission, in particular the shape-dependent mapping between rotational frequency and spectral frequency.
In addition, we update the expressions for effects of electrical dipole radiation back-reaction and plasma drag on angular momentum dissipation. We also discuss the degeneracies in describing the shape of the spectral energy distribution (SED) of spinning dust grains with the interstellar environmental parameters. Using a typical Cold Neutral Medium (CNM) environment as an example, we perform a perturbative analysis of the model parameters, revealing strong positive or negative correlations between them. A principal component analysis (PCA) shows that four dominant modes can linearly capture most of the SED variations, highlighting the degeneracy in the parameter space of the SED shape in the vicinity of the chosen CNM environment. This opens the possibility for future applications of moment expansion methods to reduce the dimensionality of the encountered SED parameter space.
AB - This paper presents 'SpyDust', an improved and extended implementation of the spinning dust emission model based on a Fokker-Planck treatment. 'SpyDust' serves not only as a Python successor to 'spdust', but also incorporates some corrections and extensions. Unlike 'spdust', which is focused on specific grain shapes, 'SpyDust' considers a wider range of grain shapes and provides the corresponding grain dynamics, directional radiation field and angular momentum transports. We recognise the unique effects of different grain shapes on emission, in particular the shape-dependent mapping between rotational frequency and spectral frequency.
In addition, we update the expressions for effects of electrical dipole radiation back-reaction and plasma drag on angular momentum dissipation. We also discuss the degeneracies in describing the shape of the spectral energy distribution (SED) of spinning dust grains with the interstellar environmental parameters. Using a typical Cold Neutral Medium (CNM) environment as an example, we perform a perturbative analysis of the model parameters, revealing strong positive or negative correlations between them. A principal component analysis (PCA) shows that four dominant modes can linearly capture most of the SED variations, highlighting the degeneracy in the parameter space of the SED shape in the vicinity of the chosen CNM environment. This opens the possibility for future applications of moment expansion methods to reduce the dimensionality of the encountered SED parameter space.
UR - https://arxiv.org/abs/2412.03431
U2 - 10.48550/ARXIV.2412.03431
DO - 10.48550/ARXIV.2412.03431
M3 - Other contribution
ER -