TY - JOUR
T1 - Stacking Fault Nucleation in Films of Vertically Oriented Multiwall Carbon Nanotubes by Pyrolysis of Ferrocene and Dimethyl Ferrocene at a Low Vapor Flow Rate
T2 - C
AU - Taallah, Ayoub
AU - Wang, Shanling
AU - Odunmbaku, Omololu
AU - Zhang, Lin
AU - Guo, Xilong
AU - Dai, Yixin
AU - Li, Wenkang
AU - Ye, Huanqing
AU - Wu, Hansong
AU - Song, Jiaxin
AU - Guo, Jian
AU - Wen, Jiqiu
AU - He, Yi
AU - Boi, Filippo S.
PY - 2024
Y1 - 2024
N2 - Recent observations of superconductivity in low-dimensional systems composed of twisted, untwisted, or rhombohedral graphene have attracted significant attention. One-dimensional moiré superlattices and flat bands have interestingly been identified in collapsed chiral carbon nanotubes (CNTs), opening up new avenues for the tunability of the electronic properties in these systems. The nucleation of hexagonal moiré superlattices and other types of stacking faults has also been demonstrated in partially collapsed and uncollapsed carbon nano-onions (CNOs). Here, we report a novel investigation on the dynamics of stacking fault nucleation within the multilayered lattices of micrometer-scale vertically oriented films of multiwall CNTs (MWCNTs), resulting from the pyrolysis of molecular precursors consisting of ferrocene or dimethyl ferrocene, at low vapor flow rates of ~5–20 mL/min. Interestingly, local nucleation of moiré-like superlattices (as stacking faults) was found when employing dimethyl ferrocene as the pyrolysis precursor. The morphological and structural properties of these systems were investigated with the aid of scanning and transmission electron microscopies, namely SEM, TEM, and HRTEM, as well as X-ray diffraction (XRD) and Raman point/mapping spectroscopy. Deconvolution analyses of the Raman spectra also demonstrated a local surface oxidation, possibly occurring on defect-rich interfaces, frequently identified within or in proximity of bamboo-like graphitic caps. By employing high-temperature Raman spectroscopy, we demonstrate a post-growth re-graphitization, which may also be visualized as an alternative way of depleting the oxygen content within the MWCNTs’ interfaces through recrystallization.
AB - Recent observations of superconductivity in low-dimensional systems composed of twisted, untwisted, or rhombohedral graphene have attracted significant attention. One-dimensional moiré superlattices and flat bands have interestingly been identified in collapsed chiral carbon nanotubes (CNTs), opening up new avenues for the tunability of the electronic properties in these systems. The nucleation of hexagonal moiré superlattices and other types of stacking faults has also been demonstrated in partially collapsed and uncollapsed carbon nano-onions (CNOs). Here, we report a novel investigation on the dynamics of stacking fault nucleation within the multilayered lattices of micrometer-scale vertically oriented films of multiwall CNTs (MWCNTs), resulting from the pyrolysis of molecular precursors consisting of ferrocene or dimethyl ferrocene, at low vapor flow rates of ~5–20 mL/min. Interestingly, local nucleation of moiré-like superlattices (as stacking faults) was found when employing dimethyl ferrocene as the pyrolysis precursor. The morphological and structural properties of these systems were investigated with the aid of scanning and transmission electron microscopies, namely SEM, TEM, and HRTEM, as well as X-ray diffraction (XRD) and Raman point/mapping spectroscopy. Deconvolution analyses of the Raman spectra also demonstrated a local surface oxidation, possibly occurring on defect-rich interfaces, frequently identified within or in proximity of bamboo-like graphitic caps. By employing high-temperature Raman spectroscopy, we demonstrate a post-growth re-graphitization, which may also be visualized as an alternative way of depleting the oxygen content within the MWCNTs’ interfaces through recrystallization.
KW - carbon nanotubes
KW - stacking fault
KW - moiré superlattice
KW - ferrocene
KW - dimethyl ferrocene
U2 - 10.3390/c10040091
DO - 10.3390/c10040091
M3 - Article
VL - 10
JO - C — Journal of Carbon Research
JF - C — Journal of Carbon Research
ER -