Stellar splashback: the edge of the intracluster light

Alis J. Deason, Kyle A. Oman, Azadeh Fattahi, Matthieu Schaller, Mathilde Jauzac, Yuanyuan Zhang, Mireia Montes, Yannick M. Bahé, Claudio Dalla Vecchia, Scott T. Kay, Tilly A. Evans

Research output: Contribution to journalArticlepeer-review

41 Downloads (Pure)

Abstract

We examine the outskirts of galaxy clusters in the C-EAGLE simulations to quantify the 'edges' of the stellar and dark matter distribution. The radius of the steepest slope in the dark matter, commonly used as a proxy for the splashback radius, is located at ∼ r200m; the strength and location of this feature depends on the recent mass accretion rate, in good agreement with previous work. Interestingly, the stellar distribution (or intracluster light, ICL) also has a well-defined edge, which is directly related to the splashback radius of the halo. Thus, detecting the edge of the ICL can provide an independent measure of the physical boundary of the halo, and the recent mass accretion rate.We show that these caustics can also be seen in the projected density profiles, but care must be taken to account for the influence of substructures and other non-diffuse material, which can bias and/or weaken the signal of the steepest slope. This is particularly important for the stellar material, which has a higher fraction bound in subhaloes than the dark matter. Finally, we show that the 'stellar splashback' feature is located beyond current observational constraints on the ICL, but these large projected distances (1 Mpc) and low surface brightnesses (μ 32 mag arcsec-2) can be reached with upcoming observational facilities such as the Vera C. Rubin Observatory, the Nancy Grace Roman Space Telescope, and Euclid.

Original languageEnglish
Pages (from-to)4181-4192
Number of pages12
JournalMonthly Notices of the Royal Astronomical Society
Volume500
Issue number3
Early online date19 Nov 2020
DOIs
Publication statusPublished - 1 Jan 2021

Keywords

  • Dark matter
  • Galaxies: Clusters: General
  • Galaxies: Haloes
  • Methods: numerical

Fingerprint

Dive into the research topics of 'Stellar splashback: the edge of the intracluster light'. Together they form a unique fingerprint.

Cite this