Strain rate viscoelastic analysis of soft and highly hydrated biomaterials.

A Tirella, G Mattei, A Ahluwalia

    Research output: Contribution to journalArticlepeer-review


    Measuring the viscoelastic behavior of highly hydrated biological materials is challenging because of their intrinsic softness and labile nature. In these materials, it is difficult to avoid prestress and therefore to establish precise initial stress and strain conditions for lumped parameter estimation using creep or stress-relaxation (SR) tests. We describe a method ( ɛ˙M or epsilon dot method) for deriving the viscoelastic parameters of soft hydrated biomaterials which avoids prestress and can be used to rapidly test degradable samples. Standard mechanical tests are first performed compressing samples using different strain rates. The dataset obtained is then analyzed to mathematically derive the material's viscoelastic parameters. In this work a stable elastomer, polydimethylsiloxane, and a labile hydrogel, gelatin, were first tested using the ɛ˙M, in parallel SR was used to compare lumped parameter estimation. After demonstrating that the elastic parameters are equivalent and that the estimation of short-time constants is more precise using the proposed method, the viscoelastic behavior of porcine liver was investigated using this approach. The results show that the constitutive parameters of hepatic tissue can be quickly quantified without the application of any prestress and before the onset of time-dependent degradation phenomena.
    Original languageEnglish
    JournalJournal of biomedical materials research. Part A
    Issue number10
    Early online date14 Aug 2013
    Publication statusPublished - Oct 2014


    • liver
    • mechanical properties
    • soft tissues
    • strain rate
    • viscoelasticity


    Dive into the research topics of 'Strain rate viscoelastic analysis of soft and highly hydrated biomaterials.'. Together they form a unique fingerprint.

    Cite this