Structural analysis of X-Linked Retinoschisis mutations reveals distinct classes which differentially effect retinoschisin function

Ewan Ramsay, Richard Collins, Thomas W. Owens, C. Alistair Siebert, Richard P.O. Jones, Tao Wang, Alan Roseman, Clair Baldock

Research output: Contribution to journalArticlepeer-review

Abstract

Retinoschisin, an octameric retinal-specific protein, is essential for retinal architecture with mutations causing X-linked retinoschisis (XLRS), a monogenic form of macular degeneration. Most XLRS-associated mutations cause intracellular retention, however a subset are secreted as octamers and the cause of their pathology is ill-defined. Therefore, here we investigated the solution structure of the retinoschisin monomer and the impact of two XLRS-causing mutants using a combinatorial approach of biophysics and cryo-EM. The retinoschisin monomer has an elongated structure which persists in the octameric assembly. Retinoschisin forms a dimer of octamers with each octameric ring adopting a planar propeller structure. Comparison of the octamer with the hexadecamer structure indicated little conformational change in the retinoschisin octamer upon dimerization, suggesting that the octamer provides a stable interface for construction of the hexadecamer. The H207Q XLRS-associated mutation was found in the interface between octamers and destabilized both monomeric and octameric retinoschisin. Octamer dimerization is consistent with the adhesive function of retinoschisin supporting interactions between retinal cell layers, so disassembly would prevent structural coupling between opposing membranes. In contrast, cryo-EM structural analysis of the R141H mutation at ~4.2Å resolution was found to only cause a subtle conformational change in the propeller tips, potentially perturbing an interaction site. Together, these findings support distinct mechanisms of pathology for two classes of XLRS-associated mutations in the retinoschisin assembly.
Original languageEnglish
Pages (from-to)5311-5320
JournalHuman Molecular Genetics
Volume25
Issue number24
DOIs
Publication statusPublished - 23 Oct 2016

Research Beacons, Institutes and Platforms

  • Manchester Institute of Biotechnology

Fingerprint

Dive into the research topics of 'Structural analysis of X-Linked Retinoschisis mutations reveals distinct classes which differentially effect retinoschisin function'. Together they form a unique fingerprint.

Cite this