TY - JOUR
T1 - Structural and dynamic analysis of adsorption of sulphur dioxide in a series of Zr‐based metal‐organic frameworks
AU - Li, Jiangnan
AU - Smith, Gemma L
AU - Chen, Yinlin
AU - Ma, Yujie
AU - Kippax-jones, Meredydd
AU - Fan, Mengtian
AU - Lu, Wanpeng
AU - Frogley, Mark D.
AU - Cinque, Gianfelice
AU - Day, Sarah J.
AU - Thompson, Stephen P.
AU - Cheng, Yongqiang
AU - Daemen, Luke L.
AU - Ramirez-cuesta, Anibal J.
AU - Schröder, Martin
AU - Yang, Sihai
PY - 2022/6/23
Y1 - 2022/6/23
N2 - We report reversible high capacity adsorption of SO2 in robust Zr-based metal-organic frameworks (MOFs). Zr-bptc (H4bptc = biphenyl-3,3’,5,5’-tetracarboxylic acid) shows a high SO2 uptake of 6.2 mmol g-1 at 0.1 bar and 298 K, reflecting excellent capture capability and removal of SO2 at low concentration (2500 ppm). Dynamic breakthrough experiments confirm that the introduction of amine, atomically-dispersed Cu(II) or heteroatomic sulphur sites into the pores enhance the capture of SO2 at low concentrations. The captured SO2 can be converted quantitatively to a pharmaceutical intermediate, aryl N-aminosulfonamide, thus converting waste to chemical values. In situ X-ray diffraction, infrared micro-spectroscopic and inelastic neutron scattering enable the visualisation of the binding domains of adsorbed SO2 molecules and host-guest binding dynamics in these materials at the atomic level. The refinement of pore environment plays a critical role in designing efficient sorbent materials.
AB - We report reversible high capacity adsorption of SO2 in robust Zr-based metal-organic frameworks (MOFs). Zr-bptc (H4bptc = biphenyl-3,3’,5,5’-tetracarboxylic acid) shows a high SO2 uptake of 6.2 mmol g-1 at 0.1 bar and 298 K, reflecting excellent capture capability and removal of SO2 at low concentration (2500 ppm). Dynamic breakthrough experiments confirm that the introduction of amine, atomically-dispersed Cu(II) or heteroatomic sulphur sites into the pores enhance the capture of SO2 at low concentrations. The captured SO2 can be converted quantitatively to a pharmaceutical intermediate, aryl N-aminosulfonamide, thus converting waste to chemical values. In situ X-ray diffraction, infrared micro-spectroscopic and inelastic neutron scattering enable the visualisation of the binding domains of adsorbed SO2 molecules and host-guest binding dynamics in these materials at the atomic level. The refinement of pore environment plays a critical role in designing efficient sorbent materials.
U2 - 10.1002/anie.202207259
DO - 10.1002/anie.202207259
M3 - Article
SN - 1433-7851
JO - Angewandte Chemie International Edition
JF - Angewandte Chemie International Edition
ER -