Abstract
High purity single crystal C60 rods with uniform dimensions are synthesized by a rapid and facile approach which can be completed over a timescale of typically a few minutes. The morphology of the fullerene product has been characterized in detail by scanning electron microscopy, scanning transmission electron microscopy, and atomic force microscopy, demonstrating that the resulting materials are solid, hexagonal cross-sectioned rods with novel faceted tips. High resolution transmission electron microscopy investigations reveal that the rods are face-centered cubic packed single crystals. Vibrational and electronic spectroscopy studies provide compelling evidence that the rods are a van der Waals solid since the electronic structure of the component C60 molecules is largely preserved. The structures obtained are found to possess novel optoelectronic properties exhibiting low energy absorption not reported in related structures and materials to date. Furthermore significant room temperature photoluminescence is obtained from the C60 rods accompanied by a small blue shift of the spectra which is also observed for the first 'allowed' absorption transitions. Given their rapid synthesis, excellent purity, optical and charge transport properties these fullerene structures are expected to be a promising materials for nanoelectronic devices including thin film organic solar cells and photodetectors.
Original language | English |
---|---|
Pages (from-to) | 3715-3720 |
Number of pages | 6 |
Journal | Journal of Materials Chemistry |
Volume | 16 |
Issue number | 37 |
DOIs | |
Publication status | Published - 2006 |