Structural evolution of paramagnetic lanthanide compounds in solution compared to time- and ensemble-average structures

Barak Alnami, Jon G. C. Kragskow, Jakob K. Staab, Jonathan M. Skelton, Nicholas F. Chilton

Research output: Contribution to journalArticlepeer-review

Abstract

Anisotropy in the magnetic susceptibility strongly influences the paramagnetic shifts seen in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) experiments. A previous study on a series of C3-symmetric prototype MRI contrast agents showed that their magnetic anisotropy was highly sensitive to changes in molecular geometry, and concluded that changes in the average angle between the lanthanide-oxygen (Ln-O) bonds and the molecular C3 axis due to solvent interactions had a significant impact on the magnetic anisotropy and, consequently, the paramagnetic shift. However, this study, like many others, was predicated on an idealised C3-symmetric structural model, which may not be representative of the dynamic structure in solution at the single-molecule level. Here, we address this by using ab initio molecular dynamics simulations to simulate how the molecular geometry, in particular the angles between the Ln-O bonds and the pseudo-C3 axis, evolves over time in solution, mimicking typical experimental conditions. We observe large-amplitude oscillations in the O-Ln-3 angles, and complete active space self-consistent field spin-orbit calculations show that this leads to similarly large oscillations in the pseudocontact (dipolar) paramagnetic NMR shifts. The time-averaged shifts show good agreement to experimental measurements, while the large fluctuations suggest that an idealised structure provides an incomplete description of the solution dynamics. Our observations have significant implications for modelling the electronic and nuclear relaxation times in this and other systems where the magnetic susceptibility is exquisitely sensitive to the molecular structure.

Original languageEnglish
JournalAmerican Chemical Society. Journal
DOIs
Publication statusPublished - 16 Jun 2023

Fingerprint

Dive into the research topics of 'Structural evolution of paramagnetic lanthanide compounds in solution compared to time- and ensemble-average structures'. Together they form a unique fingerprint.

Cite this