Abstract
The family of compounds of general formula [LnIII 4TMII 8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4 {[Gd4Zn8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (1a); [Y4Zn8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (1b); [Gd4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (2a); [Y4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (2b); [Gd4Cu8(OH)8(hep)8(O2CiPr)8](ClO4)4 (3a); [Gd4Cu8(OH)8(Hpdm)8(O2CtBu)8](ClO4)4 (4a); [Gd4Cu8(OH)8(ea)8(O2CMe)8](ClO4)4 (5a); [Gd4Ni8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (6a); [Y4Ni8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (6b); [Gd4Co8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (7a); [Y4Co8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (7b)} can be formed very simply and in high yields from the reaction of Ln(NO3)3·6H2O and TM(ClO4)2·6H2O and the appropriate ligand blend in a mixture of CH2Cl2 and MeOH in the presence of a suitable base. Remarkably, almost all the constituent parts, namely the lanthanide (or rare earth) ions LnIII (here Ln = Gd or Y), the transition metal ions TMII (here TM = Zn, Cu, Ni, Co), the bridging ligand L (Hhmp = 2-(hydroxymethyl)pyridine; Hhep = 2-(hydroxyethyl)pyridine; H2pdm = pyridine-2,6-dimethanol; Hea = 2-ethanolamine), and the carboxylates can be exchanged while maintaining the structural integrity of the molecule. NMR spectroscopy of diamagnetic complex 1b reveals the complex to be fully intact in solution with all signals from the hydroxide, ligand L, and the carboxylates equivalent on the NMR time scale, suggesting the complex possesses greater symmetry in solution than in the solid state. High resolution nano-ESI mass spectrometry on dichloromethane solutions of 2a and 2b shows both complexes are present in two charge states with little fragmentation; with the most intense peak in each spectrum corresponding to [Ln4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)2 2+. This family of compounds offers an excellent playground for probing how the magnetocaloric effect evolves by introducing either antiferromagnetic or ferromagnetic interactions, or magnetic anisotropy, by substituting the nonmagnetic ZnII (1a) with CuII (2a), NiII (6a) or CoII (7a), respectively. The largest magnetocaloric effect is found for the ferromagnetically coupled complex 6a, while the predominant antiferromagnetic interactions in 2a yield an inverse magnetocaloric effect; that is, the temperature increases on lowering the applied field, under the proper experimental conditions. In spite of increasing the magnetic density by adding ions that bring in antiferromagnetic interactions (2a) or magnetic anisotropy (7a), the magnetocaloric effect is overall smaller in 2a and 7a than in 1a, where only four GdIII spins per molecule contribute to the magnetocaloric properties.
Original language | English |
---|---|
Pages (from-to) | 10535-10546 |
Number of pages | 12 |
Journal | Inorganic Chemistry: including bioinorganic chemistry |
Volume | 55 |
Issue number | 20 |
Early online date | 29 Sep 2016 |
DOIs | |
Publication status | Published - 17 Oct 2016 |
Fingerprint
Dive into the research topics of 'Structurally Flexible and Solution Stable [Ln4TM8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4: A Playground for Magnetic Refrigeration'. Together they form a unique fingerprint.Datasets
-
CCDC 913280: Experimental Crystal Structure Determination
Hooper, T. N. (Contributor), Inglis, R. (Contributor), Lorusso, G. (Contributor), Ujma, J. (Contributor), Barran, P. (Contributor), Uhrín, D. (Contributor), Schnack, J. (Contributor), Piligkos, S. (Contributor), Evangelisti, M. (Contributor) & Brechin, E. K. (Contributor), Cambridge Crystallographic Data Centre, 1 Jan 2016
DOI: 10.5517/ccdc.csd.ccznbnl, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.ccznbnl&sid=DataCite
Dataset
-
CCDC 913283: Experimental Crystal Structure Determination
Hooper, T. N. (Contributor), Inglis, R. (Contributor), Lorusso, G. (Contributor), Ujma, J. (Contributor), Barran, P. (Contributor), Uhrín, D. (Contributor), Schnack, J. (Contributor), Piligkos, S. (Contributor), Evangelisti, M. (Contributor) & Brechin, E. K. (Contributor), Cambridge Crystallographic Data Centre, 1 Jan 2016
DOI: 10.5517/ccdc.csd.ccznbrp, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.ccznbrp&sid=DataCite
Dataset
-
CCDC 913278: Experimental Crystal Structure Determination
Hooper, T. N. (Contributor), Inglis, R. (Contributor), Lorusso, G. (Contributor), Ujma, J. (Contributor), Barran, P. (Contributor), Uhrín, D. (Contributor), Schnack, J. (Contributor), Piligkos, S. (Contributor), Evangelisti, M. (Contributor) & Brechin, E. K. (Contributor), Cambridge Crystallographic Data Centre, 22 Jun 2016
DOI: 10.5517/ccdc.csd.ccznblj, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.ccznblj&sid=DataCite
Dataset