Structure of molecular liquids: Cavity and bridge functions of the hard spheroid fluid

David L. Cheung, Lucian Anton, Michael P. Allen, Andrew J. Masters

    Research output: Contribution to journalArticlepeer-review

    Abstract

    We present methodologies for calculating the direct correlation function c (1,2), the cavity function y (1,2), and the bridge function b (1,2), for molecular liquids, from Monte Carlo simulations. As an example we present results for the isotropic hard spheroid fluid with elongation e=3. The simulation data are compared with the results from integral equation theory. In particular, we solve the Percus-Yevick and hypernetted chain equations. In addition, we calculate the first two terms in the virial expansion of the bridge function and incorporate this into the closure. At low densities, the bridge functions calculated by theory and from simulation are in good agreement, lending support to the correctness of our numerical procedures. At higher densities, the hypernetted chain results are brought into closer agreement with simulation by incorporating the approximate bridge function, but significant discrepancies remain. © 2006 The American Physical Society.
    Original languageEnglish
    Article number061204
    JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
    Volume73
    Issue number6
    DOIs
    Publication statusPublished - 2006

    Fingerprint

    Dive into the research topics of 'Structure of molecular liquids: Cavity and bridge functions of the hard spheroid fluid'. Together they form a unique fingerprint.

    Cite this