Supplementing Small Probability Samples with Nonprobability Samples: A Bayesian Approach

Joseph Sakshaug, Arkadiusz Wiśniowski, Diego Perez Ruiz, Annelies G. Blom

Research output: Contribution to journalArticlepeer-review

Abstract

Carefully designed probability-based sample surveys can be prohibitively expensive to conduct. As such, many survey organizations have shifted away from using expensive probability samples in favor of less expensive but possibly less accurate nonprobability web samples. Their lower costs and abundant availability, however, make them a potentially useful supplement to traditional probability-based samples. We examine this notion by proposing a method of supplementing small probability samples with nonprobability samples using Bayesian inference. We consider two semi-conjugate informative prior distributions for linear regression coefficients based on nonprobability samples, one accounting for the distance between maximum likelihood coefficients derived from parallel probability and nonprobability samples, and the second depending on the variability and size of the nonprobability sample. The method is evaluated in comparison with a reference prior through simulations and a real-data application involving multiple probability and nonprobability surveys elded simultaneously using the same questionnaire. We show that the method reduces the variance and mean-squared error (MSE) of coefficient estimates and model-based predictions relative to probability-only samples. Using actual and assumed cost data we also show that the method can yield substantial cost savings (up to 55 percent) for a xed MSE.
Original languageEnglish
Pages (from-to)653-681
JournalJournal of Official Statistics
Volume35
Issue number3
Early online date9 Sept 2019
DOIs
Publication statusE-pub ahead of print - 9 Sept 2019

Keywords

  • Bayesian inference
  • quota sampling
  • German Internet Panel
  • GESIS Panel
  • web surveys

Research Beacons, Institutes and Platforms

  • Cathie Marsh Institute
  • Manchester China Institute

Fingerprint

Dive into the research topics of 'Supplementing Small Probability Samples with Nonprobability Samples: A Bayesian Approach'. Together they form a unique fingerprint.

Cite this