TY - JOUR
T1 - Supramolecular architectures in 5,5′-substituted hydantoins: Crystal structures and Hirshfeld surface analyses
AU - Chattopadhyay, Basab
AU - Mukherjee, Alok K.
AU - Narendra, N.
AU - Hemantha, H. P.
AU - Sureshbabu, Vommina V.
AU - Helliwell, Madeliene
AU - Mukherjee, Monika
PY - 2010/10/6
Y1 - 2010/10/6
N2 - A series of three 5,5′-substituted hydantoin derivatives (1-3) were synthesized, and their crystal structures were solved using single-crystal synchrotron/powder-crystal X-ray diffraction data with a detailed analysis of Hirshfeld surfaces and fingerprint plots facilitating a comparison of intermolecular interactions in building different supramolecular architectures. A comparison of supramolecular assembly in the compounds with that in similar 5,5′-substituted hydantoins in the Cambridge Structural Database (CSD) has been presented. The crystal packing in compounds 1-3 containing complementary hydrogen bonding groups, i.e. the amino NH donors and carbonyl O acceptors, exhibits three types of supramolecular synthons. In the dipropyl substituted hydantoin (1), intermolecular N-H⋯O hydrogen bonds with only one carbonyl O atom acting as a double acceptor generate a one-dimensional C 11(4)C11(4)[R2 2(8)] network propagating along the [100] direction, while in 3, a 5-spiro fused hydantoin, the cyclic R22(8) motifs self-organize through pairs of N-H⋯O hydrogen bonds to form a C 22(9)[R22(8)][R2 2(8)] framework running along the [1-10] direction. The molecular assembly in 2, with a dibutyl substitution at the hydantoin C-5 position, produces R44(17) synthons, which are edge-fused to form two-dimensional molecular sheets in the (100) plane. The formation of a supramolecular architecture built with an R44(17) synthon is unprecedented among the substituted hydantoin structures in the CSD. © 2010 American Chemical Society.
AB - A series of three 5,5′-substituted hydantoin derivatives (1-3) were synthesized, and their crystal structures were solved using single-crystal synchrotron/powder-crystal X-ray diffraction data with a detailed analysis of Hirshfeld surfaces and fingerprint plots facilitating a comparison of intermolecular interactions in building different supramolecular architectures. A comparison of supramolecular assembly in the compounds with that in similar 5,5′-substituted hydantoins in the Cambridge Structural Database (CSD) has been presented. The crystal packing in compounds 1-3 containing complementary hydrogen bonding groups, i.e. the amino NH donors and carbonyl O acceptors, exhibits three types of supramolecular synthons. In the dipropyl substituted hydantoin (1), intermolecular N-H⋯O hydrogen bonds with only one carbonyl O atom acting as a double acceptor generate a one-dimensional C 11(4)C11(4)[R2 2(8)] network propagating along the [100] direction, while in 3, a 5-spiro fused hydantoin, the cyclic R22(8) motifs self-organize through pairs of N-H⋯O hydrogen bonds to form a C 22(9)[R22(8)][R2 2(8)] framework running along the [1-10] direction. The molecular assembly in 2, with a dibutyl substitution at the hydantoin C-5 position, produces R44(17) synthons, which are edge-fused to form two-dimensional molecular sheets in the (100) plane. The formation of a supramolecular architecture built with an R44(17) synthon is unprecedented among the substituted hydantoin structures in the CSD. © 2010 American Chemical Society.
UR - https://www.ccdc.cam.ac.uk/structures/search?id=doi:10.5517/cctttw9&sid=DataCite
U2 - 10.1021/cg100706n
DO - 10.1021/cg100706n
M3 - Article
SN - 1528-7483
VL - 10
SP - 4476
EP - 4484
JO - Crystal Growth and Design
JF - Crystal Growth and Design
IS - 10
ER -