TY - JOUR
T1 - Surface modification of Ti-6Al-4V alloys using triode plasma oxidation treatments
AU - Cassar, G.
AU - Avelar-Batista Wilson, J. C.
AU - Banfield, S.
AU - Housden, J.
AU - Matthews, A.
AU - Leyland, A.
PY - 2012/6/25
Y1 - 2012/6/25
N2 - In this study, triode plasma oxidation (TPO) has been used to improve the tribological characteristics of Ti-6Al-4V. The effect of TPO on ball-on-plate reciprocating-sliding, impact, and micro-abrasion wear resistance of this alloy is investigated. Surface micro-profilometry, nano-/micro-indentation hardness testing, scratch-adhesion testing, scanning electron microscopy (SEM), atomic force microscopy (AFM), glancing-angle X-ray diffraction (GAXRD), and glow-discharge optical emission spectroscopy (GDOES) data is presented to corroborate the effects of the oxidation process. 'Traditional' thermal oxidation processes were used to benchmark this novel treatment. Following TPO treatment at 700°C for only 4h, a hard (exceeding 11GPa) and well-adhered oxide layer, composed of mixtures of the anatase and rutile polymorphs of TiO 2, was formed at the surface of the Ti-alloy. This layer is accompanied by a much larger oxygen-solution strengthened zone which creates a gradual chemical and mechanical gradient from the hard oxide 'compound layer' into the ductile substrate core. The various wear testing methods employed revealed excellent wear resistance of the TPO-treated alloy-compared both to the untreated alloy and to conventional, thermally oxidised samples.
AB - In this study, triode plasma oxidation (TPO) has been used to improve the tribological characteristics of Ti-6Al-4V. The effect of TPO on ball-on-plate reciprocating-sliding, impact, and micro-abrasion wear resistance of this alloy is investigated. Surface micro-profilometry, nano-/micro-indentation hardness testing, scratch-adhesion testing, scanning electron microscopy (SEM), atomic force microscopy (AFM), glancing-angle X-ray diffraction (GAXRD), and glow-discharge optical emission spectroscopy (GDOES) data is presented to corroborate the effects of the oxidation process. 'Traditional' thermal oxidation processes were used to benchmark this novel treatment. Following TPO treatment at 700°C for only 4h, a hard (exceeding 11GPa) and well-adhered oxide layer, composed of mixtures of the anatase and rutile polymorphs of TiO 2, was formed at the surface of the Ti-alloy. This layer is accompanied by a much larger oxygen-solution strengthened zone which creates a gradual chemical and mechanical gradient from the hard oxide 'compound layer' into the ductile substrate core. The various wear testing methods employed revealed excellent wear resistance of the TPO-treated alloy-compared both to the untreated alloy and to conventional, thermally oxidised samples.
KW - Ti-6Al-4V
KW - Triode plasma oxidation
KW - Wear
UR - http://www.scopus.com/inward/record.url?scp=84862497923&partnerID=8YFLogxK
U2 - 10.1016/j.surfcoat.2012.05.001
DO - 10.1016/j.surfcoat.2012.05.001
M3 - Article
AN - SCOPUS:84862497923
SN - 0257-8972
VL - 206
SP - 4553
EP - 4561
JO - Surface and Coatings Technology
JF - Surface and Coatings Technology
IS - 22
ER -