Synthesis and Characterization of All-Acrylic Tetrablock Copolymer Nanoparticles: Waterborne Thermoplastic Elastomers via One-Pot RAFT Aqueous Emulsion Polymerization

Oliver j. Deane, Pierre Mandrelier, Osama m. Musa, Mohammed Jamali, Lee a. Fielding, Steven p. Armes

Research output: Contribution to journalArticlepeer-review

Abstract

Reversible addition–fragmentation chain transfer (RAFT) aqueous emulsion polymerization is used to prepare well-defined ABCB tetrablock copolymer nanoparticles via sequential monomer addition at 30 °C. The A block comprises water-soluble poly(2-(N-acryloyloxy)ethyl pyrrolidone) (PNAEP), while the B and C blocks comprise poly(t-butyl acrylate) (PtBA) and poly(n-butyl acrylate) (PnBA), respectively. High conversions are achieved at each stage, and the final sterically stabilized spherical nanoparticles can be obtained at 20% w/w solids at pH 3 and at up to 40% w/w solids at pH 7. A relatively long PnBA block is targeted to ensure that the final tetrablock copolymer nanoparticles form highly transparent films on drying such aqueous dispersions at ambient temperature. The kinetics of polymerization and particle growth are studied using 1H nuclear magnetic resonance spectroscopy, dynamic light scattering, and transmission electron microscopy, while gel permeation chromatography analysis confirmed a high blocking efficiency for each stage of the polymerization. Differential scanning calorimetry and small-angle X-ray scattering studies confirm microphase separation between the hard PtBA and soft PnBA blocks, and preliminary mechanical property measurements indicate that such tetrablock copolymer films exhibit promising thermoplastic elastomeric behavior. Finally, it is emphasized that targeting an overall degree of polymerization of more than 1000 for such tetrablock copolymers mitigates the cost, color, and malodor conferred by the RAFT agent.

Original languageEnglish
JournalChemistry of Materials
Early online date14 Feb 2024
DOIs
Publication statusE-pub ahead of print - 14 Feb 2024

Fingerprint

Dive into the research topics of 'Synthesis and Characterization of All-Acrylic Tetrablock Copolymer Nanoparticles: Waterborne Thermoplastic Elastomers via One-Pot RAFT Aqueous Emulsion Polymerization'. Together they form a unique fingerprint.

Cite this