Tar reduction in pyrolysis vapours from biomass over a hot char bed

P. Gilbert, C. Ryu, V. Sharifi, J. Swithenbank

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The behaviour of pyrolysis vapours over char was investigated in order to maximise tar conversion for the development of a new fixed bed gasifier. Wood samples were decomposed at a typical pyrolysis temperature (500 °C) and the pyrolysis vapours were then passed directly through a tar cracking zone in a tubular reactor. The product yields and properties of the condensable phases and non-condensable gases were studied for different bed lengths of char (0-450 mm), temperatures (500-800 °C), particle sizes (10 and 15 mm) and nitrogen purge rates (1.84-14.70 mm/s). The carbon in the condensable phases showed about 66% reduction by a 300 mm long char section at 800 °C, compared to that for pyrolysis at 500 °C. The amount of heavy condensable phase decreased with increasing temperature from about 18.4 wt% of the biomass input at 500 °C to 8.0 wt% at 800 °C, forming CO, H2 and other light molecules. The main mode of tar conversion was found to be in the vapour phase when compared to the results without the presence of char. The composition of the heavy condensable phase was simplified into much fewer secondary and tertiary tar components at 800 °C. Additional measures were required to maximise the heterogeneous effect of char for tar reduction. © 2009 Elsevier Ltd. All rights reserved.
    Original languageEnglish
    Pages (from-to)6045-6051
    Number of pages6
    JournalBioresource Technology
    Volume100
    Issue number23
    DOIs
    Publication statusPublished - Dec 2009

    Keywords

    • Biomass
    • Char
    • Gasification
    • Pyrolysis
    • Tar

    Fingerprint

    Dive into the research topics of 'Tar reduction in pyrolysis vapours from biomass over a hot char bed'. Together they form a unique fingerprint.

    Cite this