Targeted β-Phase Formation in Poly(fluorene)-Ureasil Grafted Organic-Inorganic Hybrids

Ilaria Meazzini, Jonathan M. Behrendt, Michael Turner, Rachel C. Evans

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The development of synthetic strategies to control the molecular organization (and inherently linked optoelectronic properties) of conjugated polymers is critical for the development of efficient light-emitting devices. Here, we report a facile route using sol-gel chemistry to promote the formation of the β-phase through the covalent-grafting of poly[(9,9-dioctylfluorene)-co-(9,9-bis(8-hydroxyoctyl)fluorene)] (PFO-OH) to poly(oxyalkylene)/siloxane hybrids known as ureasils, due to the urea linkages binding the organic and inorganic components. Although grafting occurs within the siliceous domains, the degree of branching of the organic backbone determines the packing of the PFO-OH chains within the ureasil framework. Moreover, photoluminescence studies indicate that physical confinement also plays a key role in promoting the evolution of the β-phase of PFO-OH as the sol-gel transition proceeds. Spectroscopic and structural analyses reveal that dibranched ureasils promote linear packing of the PFO-OH chains, while tribranched ureasils exhibit a more open, distorted structure that restricts the packing efficacy and reduces the number of covalent anchorages. These results indicate that the organic-inorganic hybrid structure induces distinct levels of β-phase formation and that covalent grafting is a versatile approach to design novel poly(fluorene) hybrid materials with tailored optical properties.

    Original languageEnglish
    Pages (from-to)4235-4243
    Number of pages9
    JournalMacromolecules
    Volume50
    Issue number11
    Early online date16 May 2017
    DOIs
    Publication statusPublished - 13 Jun 2017

    Fingerprint

    Dive into the research topics of 'Targeted β-Phase Formation in Poly(fluorene)-Ureasil Grafted Organic-Inorganic Hybrids'. Together they form a unique fingerprint.

    Cite this