TY - JOUR
T1 - Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes
AU - Lin, Xiaofen
AU - Li, Yi
AU - Leung, Polly Hangmei
AU - Li, Jiashen
AU - Hu, Junyan
AU - Liu, Xuan
AU - Li, Zhi
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4 h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39 °C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4 h exposure to cooler temperatures of 31-33 °C (P<0.01). ROS, chemically reactive molecules containing oxygen, are currently understood to be a major contributor to oxidantive stress in obesity. Additionally, cooler temperatures (31-33 °C) could improve the size of lipid droplets in 3T3-L1 adipocytes (P<0.01), but no significant effect was generated by temperature change on lipid droplets in palmitate-treated adipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (P<0.01), it still does not positively modulate lipid droplet size (P>0.05) and remedy the palmitate damage induced cell death (P<0.01). These findings provide preliminary support for potential interventions based on temperature manipulation for cell metabolism of adipocytes.
AB - Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4 h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39 °C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4 h exposure to cooler temperatures of 31-33 °C (P<0.01). ROS, chemically reactive molecules containing oxygen, are currently understood to be a major contributor to oxidantive stress in obesity. Additionally, cooler temperatures (31-33 °C) could improve the size of lipid droplets in 3T3-L1 adipocytes (P<0.01), but no significant effect was generated by temperature change on lipid droplets in palmitate-treated adipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (P<0.01), it still does not positively modulate lipid droplet size (P>0.05) and remedy the palmitate damage induced cell death (P<0.01). These findings provide preliminary support for potential interventions based on temperature manipulation for cell metabolism of adipocytes.
KW - Adipocytes
KW - Cell viability
KW - Lipid droplet size
KW - Oxidative stress
KW - Temperature
UR - http://www.scopus.com/inward/record.url?scp=84962594380&partnerID=8YFLogxK
U2 - 10.1016/j.jtherbio.2016.03.008
DO - 10.1016/j.jtherbio.2016.03.008
M3 - Article
AN - SCOPUS:84962594380
SN - 0306-4565
VL - 58
SP - 1
EP - 7
JO - Journal of thermal biology
JF - Journal of thermal biology
ER -