The assessment of residual stress effects on ductile tearing using continuum damage mechanics

Andrew H. Sherry, Mark A. Wilkes, John K. Sharples, Peter J. Budden

    Research output: Contribution to journalArticlepeer-review

    Abstract

    This paper presents the results of a numerical study undertaken to assess the influence of residual stresses on the ductile tearing behavior of a high strength low toughness aluminum alloy. The Gurson-Tvergaard model was calibrated against conventional fracture toughness data using parameters relating to void nucleation, growth, and coalescence. The calibrated model was used to predict the load versus ductile tearing behavior of a series of full-scale and quarter-scale wide-plate tests. These center-cracked tension tests included specimens that contained a self-balancing residual stress field that was tensile in the region of the through-wall crack. Analyses of the full-scale wide-plate tests indicated that the model provides a good prediction of the load versus the ductile tearing behavior up to approximately 3 mm of stable tearing. The influence of residual stress on the load versus the crack growth behavior was accurately simulated. Predictions of the load versus the crack growth behavior of full-scale wide-plate tests for crack extensions greater than 3 mm and of the quarter-scale tests were low in terms of predicted load at a given amount of tearing. This was considered to result from (i) the "valid" calibration range in terms of specimen thickness and crack extension, (ii) the development of shear lips, and (iii) the differences in the micromechanism of ductile void formation under plane strain ana under plane stress conditions. Copyright © 2008 by ASME.
    Original languageEnglish
    Pages (from-to)0412121-0412128
    Number of pages7
    JournalJournal of Pressure Vessel Technology, Transactions of the ASME
    Volume130
    Issue number4
    DOIs
    Publication statusPublished - Nov 2008

    Keywords

    • Damage mechanics
    • Ductile fracture
    • Fracture mechanics
    • Gurson-tvergaard model
    • Residual stresses

    Fingerprint

    Dive into the research topics of 'The assessment of residual stress effects on ductile tearing using continuum damage mechanics'. Together they form a unique fingerprint.

    Cite this