TY - JOUR
T1 - The backscatter cloud probe-a compact low-profile autonomous optical spectrometer
AU - Beswick, K.
AU - Baumgardner, D.
AU - Gallagher, M.
AU - Volz-Thomas, A.
AU - Nedelec, P.
AU - Wang, K. Y.
AU - Lance, S.
N1 - The authors would like to thank the staff of the Facility for Airborne Atmospheric Measurements (FAAM), Bill Dawson, Roy Newton and Gary Granger of Droplet Measure- ment Technologies and Lufthansa and China Airlines for their cooperation in partnering with IAGOS to make these invaluable environmental measurements. Financial support of the instrument development, installation and operation from the European Com- mission projects IAGOS-DS and IAGOS-ERI, national agencies in Germany (BMBF), France (MESR), and the UK (NERC), and the IAGOS member institutions (http://www.iagos.org/partners) is gratefully acknowledged. The calibration work was supported by the National Oceanic and Atmospheric Administration (NOAA) climate and air quality programs. Finally we would like to than David Delene and Gabor Vali for their detailed reviews that greatly improved the quality of this manuscript.
PY - 2014/5/23
Y1 - 2014/5/23
N2 - A compact (500 cm3), lightweight (500 g), near-field, single particle backscattering optical spectrometer is described that mounts flush with the skin of an aircraft and measures the concentration and optical equivalent diameter of particles from 5 to 75 Î1/4m. The backscatter cloud probe (BCP) was designed as a real-time qualitative cloud detector primarily for data quality control of trace gas instruments developed for the climate monitoring instrument packages that are being installed on commercial passenger aircraft as part of the European Union In-Service Aircraft for a Global Observing System (IAGOS) program (http://www.iagos.org/ ). Subsequent evaluations of the BCP measurements on a number of research aircraft, however, have revealed it capable of delivering quantitative particle data products including size distributions, liquid-water content and other information on cloud properties. We demonstrate the instrument's capability for delivering useful long-term climatological, as well as aviation performance information, across a wide range of environmental conditions. The BCP has been evaluated by comparing its measurements with those from other cloud particle spectrometers on research aircraft and several BCPs are currently flying on commercial A340/A330 Airbus passenger airliners. The design and calibration of the BCP is described in this article, along with an evaluation of measurements made on the research and commercial aircraft. Preliminary results from more than 7000 h of airborne measurements by the BCP on two Airbus A340s operating on routine global traffic routes (one Lufthansa, the other China Airlines) show that more than 340 h of cloud data have been recorded at normal cruise altitudes (> 10 km) and more than 40% of the > 1200 flights were through clouds at some point between takeoff and landing. These data are a valuable contribution to databases of cloud properties, including sub-visible cirrus, in the upper troposphere and useful for validating satellite retrievals of cloud water and effective radius; in addition, providing a broader, geographically and climatologically relevant view of cloud microphysical variability that is useful for improving parameterizations of clouds in climate models. Moreover, they are also useful for monitoring the vertical climatology of clouds over airports, especially those over megacities where pollution emissions may be impacting local and regional climate. © 2014 Author(s).
AB - A compact (500 cm3), lightweight (500 g), near-field, single particle backscattering optical spectrometer is described that mounts flush with the skin of an aircraft and measures the concentration and optical equivalent diameter of particles from 5 to 75 Î1/4m. The backscatter cloud probe (BCP) was designed as a real-time qualitative cloud detector primarily for data quality control of trace gas instruments developed for the climate monitoring instrument packages that are being installed on commercial passenger aircraft as part of the European Union In-Service Aircraft for a Global Observing System (IAGOS) program (http://www.iagos.org/ ). Subsequent evaluations of the BCP measurements on a number of research aircraft, however, have revealed it capable of delivering quantitative particle data products including size distributions, liquid-water content and other information on cloud properties. We demonstrate the instrument's capability for delivering useful long-term climatological, as well as aviation performance information, across a wide range of environmental conditions. The BCP has been evaluated by comparing its measurements with those from other cloud particle spectrometers on research aircraft and several BCPs are currently flying on commercial A340/A330 Airbus passenger airliners. The design and calibration of the BCP is described in this article, along with an evaluation of measurements made on the research and commercial aircraft. Preliminary results from more than 7000 h of airborne measurements by the BCP on two Airbus A340s operating on routine global traffic routes (one Lufthansa, the other China Airlines) show that more than 340 h of cloud data have been recorded at normal cruise altitudes (> 10 km) and more than 40% of the > 1200 flights were through clouds at some point between takeoff and landing. These data are a valuable contribution to databases of cloud properties, including sub-visible cirrus, in the upper troposphere and useful for validating satellite retrievals of cloud water and effective radius; in addition, providing a broader, geographically and climatologically relevant view of cloud microphysical variability that is useful for improving parameterizations of clouds in climate models. Moreover, they are also useful for monitoring the vertical climatology of clouds over airports, especially those over megacities where pollution emissions may be impacting local and regional climate. © 2014 Author(s).
U2 - 10.5194/amt-7-1443-2014
DO - 10.5194/amt-7-1443-2014
M3 - Article
VL - 7
SP - 1443
EP - 1457
JO - Atmospheric Measurement Techniques Discussions
JF - Atmospheric Measurement Techniques Discussions
SN - 1867-8610
IS - 5
ER -